Spaces:
Runtime error
Runtime error
File size: 1,029 Bytes
301fba0 e13e868 6ff1b24 301fba0 e13e868 6ff1b24 e13e868 6ff1b24 e13e868 6ff1b24 e13e868 6ff1b24 e13e868 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
import logging
from transformers import AutoModelForCausalLM, AutoTokenizer
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
model_name = "deepseek-ai/DeepSeek-R1"
logging.info(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def wrapped_model(input_text):
logging.info(f"Input text: {input_text}")
inputs = tokenizer(input_text, return_tensors="pt")
logging.debug(f"Tokenized input: {inputs}")
outputs = model.generate(**inputs, max_length=512, num_return_sequences=1)
logging.debug(f"Model output tokens: {outputs}")
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
logging.info(f"Decoded output: {decoded_output}")
return decoded_output
interface = gr.Interface(
fn=wrapped_model,
inputs=gr.Textbox(lines=2, label="Enter your prompt"),
outputs=gr.Textbox(label="Output")
)
interface.launch()
|