|
import json |
|
import os |
|
import shutil |
|
import requests |
|
|
|
import gradio as gr |
|
from huggingface_hub import Repository, InferenceClient |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-180B-chat" |
|
BOT_NAME = "Falcon" |
|
|
|
STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"] |
|
|
|
EXAMPLES = [ |
|
["Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"], |
|
["What's the Everett interpretation of quantum mechanics?"], |
|
["Give me a list of the top 10 dive sites you would recommend around the world."], |
|
["Can you tell me more about deep-water soloing?"], |
|
["Can you write a short tweet about the release of our latest AI model, Falcon LLM?"] |
|
] |
|
|
|
client = InferenceClient( |
|
API_URL, |
|
headers={"Authorization": f"Bearer {HF_TOKEN}"}, |
|
) |
|
|
|
def format_prompt(message, history, system_prompt): |
|
prompt = "" |
|
if system_prompt: |
|
prompt += f"System: {system_prompt}\n" |
|
for user_prompt, bot_response in history: |
|
prompt += f"User: {user_prompt}\n" |
|
prompt += f"Falcon: {bot_response}\n" |
|
prompt += f"""User: {message} |
|
Falcon:""" |
|
return prompt |
|
|
|
seed = 42 |
|
|
|
def generate( |
|
prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, |
|
): |
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
global seed |
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
stop_sequences=STOP_SEQUENCES, |
|
do_sample=True, |
|
seed=seed, |
|
) |
|
seed = seed + 1 |
|
formatted_prompt = format_prompt(prompt, history, system_prompt) |
|
|
|
try: |
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
output += response.token.text |
|
|
|
for stop_str in STOP_SEQUENCES: |
|
if output.endswith(stop_str): |
|
output = output[:-len(stop_str)] |
|
output = output.rstrip() |
|
yield output |
|
yield output |
|
except Exception as e: |
|
raise gr.Error(f"Error while generating: {e}") |
|
return output |
|
|
|
|
|
additional_inputs=[ |
|
gr.Textbox("", label="Optional system prompt"), |
|
gr.Slider( |
|
label="Temperature", |
|
value=0.9, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values produce more diverse outputs", |
|
), |
|
gr.Slider( |
|
label="Max new tokens", |
|
value=256, |
|
minimum=0, |
|
maximum=3000, |
|
step=64, |
|
interactive=True, |
|
info="The maximum numbers of new tokens", |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
value=0.90, |
|
minimum=0.01, |
|
maximum=0.99, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values sample more low-probability tokens", |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
value=1.2, |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Penalize repeated tokens", |
|
) |
|
] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=0.4): |
|
gr.Image("better_banner.jpeg", elem_id="banner-image", show_label=False) |
|
with gr.Column(): |
|
gr.Markdown( |
|
"""# Falcon-180B Demo |
|
|
|
**Chat with [Falcon-180B-Chat](https://huggingface.co/tiiuae/falcon-180b-chat), brainstorm ideas, discuss your holiday plans, and more!** |
|
|
|
✨ This demo is powered by [Falcon-180B](https://huggingface.co/tiiuae/falcon-180B) and finetuned on a mixture of [Ultrachat](https://huggingface.co/datasets/stingning/ultrachat), [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) and [Airoboros](https://huggingface.co/datasets/jondurbin/airoboros-2.1). [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b) is a state-of-the-art large language model built by the [Technology Innovation Institute](https://www.tii.ae) in Abu Dhabi. It is trained on 3.5 trillion tokens (including [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)) and available under the [Falcon-180B TII License](https://huggingface.co/spaces/tiiuae/falcon-180b-license/blob/main/LICENSE.txt). It currently holds the 🥇 1st place on the [🤗 Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for a pretrained model. |
|
|
|
🧪 This is only a **first experimental preview**: we intend to provide increasingly capable versions of Falcon in the future, based on improved datasets and RLHF/RLAIF. |
|
|
|
👀 **Learn more about Falcon LLM:** [falconllm.tii.ae](https://falconllm.tii.ae/) |
|
|
|
➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b), to illustrate the impact (and limitations) of finetuning on a dataset of conversations and instructions. We encourage the community to further build upon the base model, and to create even better instruct/chat versions! |
|
|
|
⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words. |
|
""" |
|
) |
|
|
|
gr.ChatInterface( |
|
generate, |
|
examples=EXAMPLES, |
|
additional_inputs=additional_inputs, |
|
) |
|
|
|
demo.queue(concurrency_count=100, api_open=False).launch(show_api=False) |
|
|