import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('model.pkl') #from huggingface_hub import from_pretrained_fastai #learn = from_pretrained_fastai("devdatanalytics/commonbean") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} #title = "Common beans diseases classfier" #description = "An app for Common beans diseases Classisfication" #article="

The app identifies and classifies common beans diseases: Anthracnose and Bean rust.

" # Create the Gradio interface interface = gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=3) ) # Enable the queue to handle POST requests interface.queue(api_open=True) # Launch the interface interface.launch()