Update app.py
Browse files
app.py
CHANGED
@@ -1,213 +1,285 @@
|
|
1 |
-
# app.py
|
2 |
import streamlit as st
|
3 |
from Bio import pairwise2
|
4 |
import re
|
5 |
from collections import defaultdict
|
6 |
import pandas as pd
|
7 |
import plotly.express as px
|
8 |
-
import
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
parts = content.split('\n', 1)
|
17 |
sequence = ''.join(parts[1].split('\n')).replace(' ', '')
|
18 |
return sequence.upper()
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def extract_gene_region(genome_seq, gene_start, gene_end):
|
24 |
-
"""
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
start = max(0, gene_start - flank)
|
30 |
-
end = min(len(genome_seq), gene_end + flank)
|
31 |
-
return genome_seq[start:end], start
|
32 |
-
except Exception as e:
|
33 |
-
st.error(f"Error extracting gene region: {str(e)}")
|
34 |
-
return None, None
|
35 |
|
36 |
def find_mutations_with_context(ref_seq, query_seq, gene_start, gene_end, offset=0):
|
37 |
-
"""
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
extend=-0.5)
|
46 |
-
|
47 |
-
if not alignments:
|
48 |
-
st.warning("No alignments found")
|
49 |
-
return []
|
50 |
-
|
51 |
-
alignment = alignments[0]
|
52 |
-
ref_aligned, query_aligned = alignment[0], alignment[1]
|
53 |
-
|
54 |
-
mutations = []
|
55 |
-
real_pos = 0
|
56 |
-
|
57 |
-
for i in range(len(ref_aligned)):
|
58 |
-
if ref_aligned[i] != '-':
|
59 |
-
real_pos += 1
|
60 |
-
|
61 |
-
if ref_aligned[i] != query_aligned[i]:
|
62 |
-
adj_pos = offset + real_pos
|
63 |
-
if gene_start <= adj_pos <= gene_end:
|
64 |
-
mut = {
|
65 |
-
'position': adj_pos,
|
66 |
-
'gene_position': adj_pos - gene_start + 1,
|
67 |
-
'ref_base': ref_aligned[i],
|
68 |
-
'query_base': query_aligned[i] if query_aligned[i] != '-' else 'None',
|
69 |
-
'type': 'SNP' if ref_aligned[i] != '-' and query_aligned[i] != '-' else 'INDEL',
|
70 |
-
'codon_position': (real_pos - 1) % 3 + 1,
|
71 |
-
'context': {
|
72 |
-
'ref': ref_aligned[max(0,i-5):i] + '[' + ref_aligned[i] + ']' + ref_aligned[i+1:i+6],
|
73 |
-
'query': query_aligned[max(0,i-5):i] + '[' + query_aligned[i] + ']' + query_aligned[i+1:i+6]
|
74 |
-
}
|
75 |
-
}
|
76 |
-
mutations.append(mut)
|
77 |
-
|
78 |
-
return mutations
|
79 |
-
except Exception as e:
|
80 |
-
st.error(f"Error in mutation analysis: {str(e)}")
|
81 |
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
'katG': {'start': 2153889, 'end': 2156111, 'description': 'Catalase-peroxidase (Isoniazid resistance)'},
|
87 |
-
'inhA': {'start': 1674202, 'end': 1675011, 'description': 'Enoyl-ACP reductase (Isoniazid resistance)'},
|
88 |
-
'gyrA': {'start': 7302, 'end': 9818, 'description': 'DNA gyrase subunit A (Fluoroquinolone resistance)'}
|
89 |
-
}
|
90 |
-
|
91 |
-
def create_mutation_dataframe(mutations):
|
92 |
-
"""
|
93 |
-
Convert mutations list to pandas DataFrame
|
94 |
-
"""
|
95 |
-
if not mutations:
|
96 |
-
return pd.DataFrame()
|
97 |
|
98 |
-
data = []
|
99 |
for mut in mutations:
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
'
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
def
|
111 |
-
"""
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
fig = px.scatter(df,
|
118 |
-
x='Position',
|
119 |
-
y='Type',
|
120 |
-
color='Type',
|
121 |
-
title='Mutation Distribution',
|
122 |
-
labels={'Position': 'Genome Position', 'Type': 'Mutation Type'})
|
123 |
return fig
|
124 |
|
125 |
def main():
|
126 |
-
st.title("M. tuberculosis
|
127 |
|
128 |
st.markdown("""
|
129 |
-
|
130 |
-
Upload your
|
|
|
131 |
""")
|
132 |
|
133 |
-
#
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
139 |
|
140 |
-
#
|
141 |
-
|
142 |
-
"Select gene to analyze",
|
143 |
-
options=list(IMPORTANT_GENES.keys()),
|
144 |
-
format_func=lambda x: f"{x} - {IMPORTANT_GENES[x]['description']}"
|
145 |
-
)
|
146 |
|
147 |
-
if
|
148 |
-
if st.button("Analyze
|
149 |
-
with st.spinner("Analyzing
|
150 |
-
# Read sequences
|
151 |
-
ref_genome = read_fasta_from_upload(reference_file)
|
152 |
query_genome = read_fasta_from_upload(query_file)
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
158 |
|
159 |
-
#
|
160 |
-
|
161 |
-
query_region, _ = extract_gene_region(query_genome, gene_start, gene_end)
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
184 |
|
185 |
-
#
|
186 |
-
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
209 |
else:
|
210 |
-
st.
|
|
|
211 |
|
212 |
if __name__ == "__main__":
|
213 |
main()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from Bio import pairwise2
|
3 |
import re
|
4 |
from collections import defaultdict
|
5 |
import pandas as pd
|
6 |
import plotly.express as px
|
7 |
+
import plotly.graph_objects as go
|
8 |
|
9 |
+
# Define important gene regions and their associated resistance patterns
|
10 |
+
RESISTANCE_GENES = {
|
11 |
+
'rpoB': {
|
12 |
+
'start': 759807,
|
13 |
+
'end': 763325,
|
14 |
+
'description': 'RNA polymerase β subunit',
|
15 |
+
'drug': 'Rifampicin',
|
16 |
+
'mutations': {
|
17 |
+
'531': {'from': 'S', 'to': ['L'], 'freq': 'High', 'confidence': 'High'},
|
18 |
+
'526': {'from': 'H', 'to': ['Y', 'D', 'R'], 'freq': 'High', 'confidence': 'High'},
|
19 |
+
'516': {'from': 'D', 'to': ['V', 'G'], 'freq': 'Moderate', 'confidence': 'High'},
|
20 |
+
'511': {'from': 'L', 'to': ['P'], 'freq': 'Low', 'confidence': 'Moderate'}
|
21 |
+
}
|
22 |
+
},
|
23 |
+
'katG': {
|
24 |
+
'start': 2153889,
|
25 |
+
'end': 2156111,
|
26 |
+
'description': 'Catalase-peroxidase',
|
27 |
+
'drug': 'Isoniazid',
|
28 |
+
'mutations': {
|
29 |
+
'315': {'from': 'S', 'to': ['T', 'N'], 'freq': 'High', 'confidence': 'High'},
|
30 |
+
'463': {'from': 'R', 'to': ['L'], 'freq': 'Moderate', 'confidence': 'Moderate'}
|
31 |
+
}
|
32 |
+
},
|
33 |
+
'inhA': {
|
34 |
+
'start': 1674202,
|
35 |
+
'end': 1675011,
|
36 |
+
'description': 'Enoyl-ACP reductase',
|
37 |
+
'drug': 'Isoniazid/Ethionamide',
|
38 |
+
'mutations': {
|
39 |
+
'-15': {'from': 'C', 'to': ['T'], 'freq': 'High', 'confidence': 'High'},
|
40 |
+
'94': {'from': 'S', 'to': ['A'], 'freq': 'Moderate', 'confidence': 'High'}
|
41 |
+
}
|
42 |
+
},
|
43 |
+
'gyrA': {
|
44 |
+
'start': 7302,
|
45 |
+
'end': 9818,
|
46 |
+
'description': 'DNA gyrase subunit A',
|
47 |
+
'drug': 'Fluoroquinolones',
|
48 |
+
'mutations': {
|
49 |
+
'90': {'from': 'A', 'to': ['V'], 'freq': 'High', 'confidence': 'High'},
|
50 |
+
'94': {'from': 'D', 'to': ['G', 'A', 'N'], 'freq': 'High', 'confidence': 'High'}
|
51 |
+
}
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
def read_fasta_file(file_path):
|
56 |
+
"""Read a FASTA file from disk"""
|
57 |
+
with open(file_path, 'r') as handle:
|
58 |
+
content = handle.read().strip()
|
59 |
parts = content.split('\n', 1)
|
60 |
sequence = ''.join(parts[1].split('\n')).replace(' ', '')
|
61 |
return sequence.upper()
|
62 |
+
|
63 |
+
def read_fasta_from_upload(uploaded_file):
|
64 |
+
"""Read a FASTA file from Streamlit upload"""
|
65 |
+
content = uploaded_file.getvalue().decode('utf-8').strip()
|
66 |
+
parts = content.split('\n', 1)
|
67 |
+
sequence = ''.join(parts[1].split('\n')).replace(' ', '')
|
68 |
+
return sequence.upper()
|
69 |
|
70 |
def extract_gene_region(genome_seq, gene_start, gene_end):
|
71 |
+
"""Extract a gene region with additional context"""
|
72 |
+
flank = 200
|
73 |
+
start = max(0, gene_start - flank)
|
74 |
+
end = min(len(genome_seq), gene_end + flank)
|
75 |
+
return genome_seq[start:end], start
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
def find_mutations_with_context(ref_seq, query_seq, gene_start, gene_end, offset=0):
|
78 |
+
"""Find mutations with sequence context"""
|
79 |
+
alignments = pairwise2.align.globalms(ref_seq, query_seq,
|
80 |
+
match=2,
|
81 |
+
mismatch=-3,
|
82 |
+
open=-10,
|
83 |
+
extend=-0.5)
|
84 |
+
|
85 |
+
if not alignments:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
return []
|
87 |
+
|
88 |
+
alignment = alignments[0]
|
89 |
+
ref_aligned, query_aligned = alignment[0], alignment[1]
|
90 |
+
|
91 |
+
mutations = []
|
92 |
+
real_pos = 0
|
93 |
+
|
94 |
+
for i in range(len(ref_aligned)):
|
95 |
+
if ref_aligned[i] != '-':
|
96 |
+
real_pos += 1
|
97 |
+
|
98 |
+
if ref_aligned[i] != query_aligned[i]:
|
99 |
+
adj_pos = offset + real_pos
|
100 |
+
if gene_start <= adj_pos <= gene_end:
|
101 |
+
mut = {
|
102 |
+
'position': adj_pos,
|
103 |
+
'gene_position': adj_pos - gene_start + 1,
|
104 |
+
'ref_base': ref_aligned[i],
|
105 |
+
'query_base': query_aligned[i] if query_aligned[i] != '-' else 'None',
|
106 |
+
'type': 'SNP' if ref_aligned[i] != '-' and query_aligned[i] != '-' else 'INDEL',
|
107 |
+
'codon_position': (real_pos - 1) % 3 + 1,
|
108 |
+
'context': {
|
109 |
+
'ref': ref_aligned[max(0,i-5):i] + '[' + ref_aligned[i] + ']' + ref_aligned[i+1:i+6],
|
110 |
+
'query': query_aligned[max(0,i-5):i] + '[' + query_aligned[i] + ']' + query_aligned[i+1:i+6]
|
111 |
+
}
|
112 |
+
}
|
113 |
+
mutations.append(mut)
|
114 |
+
|
115 |
+
return mutations
|
116 |
|
117 |
+
def analyze_resistance(mutations, gene_info):
|
118 |
+
"""Analyze mutations for drug resistance patterns"""
|
119 |
+
resistance_found = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
121 |
for mut in mutations:
|
122 |
+
codon_pos = str(mut['gene_position'] // 3 + 1)
|
123 |
+
if codon_pos in gene_info['mutations']:
|
124 |
+
pattern = gene_info['mutations'][codon_pos]
|
125 |
+
if mut['ref_base'] == pattern['from'] and mut['query_base'] in pattern['to']:
|
126 |
+
resistance_found.append({
|
127 |
+
'position': codon_pos,
|
128 |
+
'change': f"{pattern['from']}{codon_pos}{mut['query_base']}",
|
129 |
+
'frequency': pattern['freq'],
|
130 |
+
'confidence': pattern['confidence']
|
131 |
+
})
|
132 |
+
|
133 |
+
return resistance_found
|
134 |
+
|
135 |
+
def create_resistance_report(all_results):
|
136 |
+
"""Create a comprehensive resistance report"""
|
137 |
+
report = []
|
138 |
+
for gene, results in all_results.items():
|
139 |
+
if results['resistance']:
|
140 |
+
drug = RESISTANCE_GENES[gene]['drug']
|
141 |
+
mutations = results['resistance']
|
142 |
+
confidence = max(m['confidence'] for m in mutations)
|
143 |
+
report.append({
|
144 |
+
'gene': gene,
|
145 |
+
'drug': drug,
|
146 |
+
'mutations_found': len(mutations),
|
147 |
+
'mutations': mutations,
|
148 |
+
'confidence': confidence
|
149 |
+
})
|
150 |
+
return report
|
151 |
|
152 |
+
def plot_gene_mutations(mutations_by_gene, genome_length):
|
153 |
+
"""Create a visualization of mutations across genes"""
|
154 |
+
fig = go.Figure()
|
155 |
+
|
156 |
+
colors = {'rpoB': 'red', 'katG': 'blue', 'inhA': 'green', 'gyrA': 'purple'}
|
157 |
+
|
158 |
+
for gene in RESISTANCE_GENES:
|
159 |
+
gene_info = RESISTANCE_GENES[gene]
|
160 |
+
mutations = mutations_by_gene.get(gene, [])
|
161 |
+
|
162 |
+
# Add gene region
|
163 |
+
fig.add_trace(go.Scatter(
|
164 |
+
x=[gene_info['start'], gene_info['end']],
|
165 |
+
y=[1, 1],
|
166 |
+
mode='lines',
|
167 |
+
name=f"{gene} ({gene_info['drug']})",
|
168 |
+
line=dict(color=colors.get(gene, 'gray'), width=20, dash='solid'),
|
169 |
+
))
|
170 |
+
|
171 |
+
# Add mutations
|
172 |
+
if mutations:
|
173 |
+
x_pos = [m['position'] for m in mutations]
|
174 |
+
fig.add_trace(go.Scatter(
|
175 |
+
x=x_pos,
|
176 |
+
y=[1.2] * len(x_pos),
|
177 |
+
mode='markers',
|
178 |
+
name=f'{gene} mutations',
|
179 |
+
marker=dict(color=colors.get(gene, 'gray'), size=10, symbol='star'),
|
180 |
+
))
|
181 |
+
|
182 |
+
fig.update_layout(
|
183 |
+
title="Resistance-associated Mutations",
|
184 |
+
xaxis_title="Genome Position",
|
185 |
+
yaxis_visible=False,
|
186 |
+
showlegend=True,
|
187 |
+
height=400,
|
188 |
+
margin=dict(l=50, r=50, t=50, b=50)
|
189 |
+
)
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
return fig
|
192 |
|
193 |
def main():
|
194 |
+
st.title("M. tuberculosis Drug Resistance Analysis")
|
195 |
|
196 |
st.markdown("""
|
197 |
+
### Automated Drug Resistance Analysis Tool
|
198 |
+
Upload your query genome (clinical isolate) in FASTA format for comparison with H37Rv reference.
|
199 |
+
The tool will automatically analyze resistance-associated genes and provide a detailed report.
|
200 |
""")
|
201 |
|
202 |
+
# Load reference genome
|
203 |
+
try:
|
204 |
+
ref_genome = read_fasta_file("NC_000962.3.fasta")
|
205 |
+
st.success("Reference genome (H37Rv) loaded successfully")
|
206 |
+
except Exception as e:
|
207 |
+
st.error(f"Error loading reference genome: {e}")
|
208 |
+
return
|
209 |
|
210 |
+
# Query genome upload
|
211 |
+
query_file = st.file_uploader("Upload Query Genome (FASTA)", type=['fasta', 'fa'])
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
if query_file:
|
214 |
+
if st.button("Analyze Drug Resistance"):
|
215 |
+
with st.spinner("Analyzing genome..."):
|
|
|
|
|
216 |
query_genome = read_fasta_from_upload(query_file)
|
217 |
|
218 |
+
# Analyze each resistance gene
|
219 |
+
all_results = {}
|
220 |
+
for gene, info in RESISTANCE_GENES.items():
|
221 |
+
# Extract and analyze regions
|
222 |
+
ref_region, ref_start = extract_gene_region(ref_genome, info['start'], info['end'])
|
223 |
+
query_region, _ = extract_gene_region(query_genome, info['start'], info['end'])
|
224 |
|
225 |
+
# Find mutations
|
226 |
+
mutations = find_mutations_with_context(ref_region, query_region, info['start'], info['end'], ref_start)
|
|
|
227 |
|
228 |
+
# Analyze resistance patterns
|
229 |
+
resistance = analyze_resistance(mutations, info)
|
230 |
+
|
231 |
+
all_results[gene] = {
|
232 |
+
'mutations': mutations,
|
233 |
+
'resistance': resistance
|
234 |
+
}
|
235 |
+
|
236 |
+
# Generate comprehensive report
|
237 |
+
resistance_report = create_resistance_report(all_results)
|
238 |
+
|
239 |
+
# Display Results
|
240 |
+
st.header("Drug Resistance Analysis Results")
|
241 |
+
|
242 |
+
if resistance_report:
|
243 |
+
st.warning("⚠️ Potential drug resistance mutations detected")
|
244 |
+
|
245 |
+
# Display resistance summary
|
246 |
+
for entry in resistance_report:
|
247 |
+
st.subheader(f"🧬 {entry['gene']} - {RESISTANCE_GENES[entry['gene']]['drug']}")
|
248 |
+
st.write(f"Confidence: {entry['confidence']}")
|
249 |
+
st.write(f"Mutations found: {entry['mutations_found']}")
|
250 |
|
251 |
+
# Create detailed mutation table
|
252 |
+
mutations_df = pd.DataFrame(entry['mutations'])
|
253 |
+
st.dataframe(mutations_df)
|
254 |
|
255 |
+
st.markdown("---")
|
256 |
+
|
257 |
+
# Visualize mutations
|
258 |
+
st.subheader("Mutation Visualization")
|
259 |
+
fig = plot_gene_mutations(all_results, len(ref_genome))
|
260 |
+
st.plotly_chart(fig)
|
261 |
+
|
262 |
+
# Clinical interpretation
|
263 |
+
st.subheader("Clinical Interpretation")
|
264 |
+
st.markdown("""
|
265 |
+
- High confidence mutations strongly indicate resistance
|
266 |
+
- Multiple mutations in the same gene may indicate high-level resistance
|
267 |
+
- Consider phenotypic testing to confirm resistance patterns
|
268 |
+
""")
|
269 |
+
|
270 |
+
# Download results
|
271 |
+
report_df = pd.DataFrame(resistance_report)
|
272 |
+
csv = report_df.to_csv(index=False)
|
273 |
+
st.download_button(
|
274 |
+
"Download Detailed Report (CSV)",
|
275 |
+
csv,
|
276 |
+
"resistance_analysis.csv",
|
277 |
+
"text/csv",
|
278 |
+
key='download-csv'
|
279 |
+
)
|
280 |
else:
|
281 |
+
st.success("No known resistance mutations detected")
|
282 |
+
st.info("Note: This does not guarantee drug susceptibility. Consider phenotypic testing.")
|
283 |
|
284 |
if __name__ == "__main__":
|
285 |
main()
|