lyimo commited on
Commit
edf285e
·
verified ·
1 Parent(s): 38d4316

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +279 -143
app.py CHANGED
@@ -1,12 +1,15 @@
1
  import streamlit as st
2
  from Bio import pairwise2
 
3
  import re
4
  from collections import defaultdict
5
  import pandas as pd
6
  import plotly.express as px
7
  import plotly.graph_objects as go
8
 
9
- # Define important gene regions and their associated resistance patterns
 
 
10
  RESISTANCE_GENES = {
11
  'rpoB': {
12
  'start': 759807,
@@ -14,6 +17,7 @@ RESISTANCE_GENES = {
14
  'description': 'RNA polymerase β subunit',
15
  'drug': 'Rifampicin',
16
  'mutations': {
 
17
  '531': {'from': 'S', 'to': ['L'], 'freq': 'High', 'confidence': 'High'},
18
  '526': {'from': 'H', 'to': ['Y', 'D', 'R'], 'freq': 'High', 'confidence': 'High'},
19
  '516': {'from': 'D', 'to': ['V', 'G'], 'freq': 'Moderate', 'confidence': 'High'},
@@ -36,8 +40,9 @@ RESISTANCE_GENES = {
36
  'description': 'Enoyl-ACP reductase',
37
  'drug': 'Isoniazid/Ethionamide',
38
  'mutations': {
 
39
  '-15': {'from': 'C', 'to': ['T'], 'freq': 'High', 'confidence': 'High'},
40
- '94': {'from': 'S', 'to': ['A'], 'freq': 'Moderate', 'confidence': 'High'}
41
  }
42
  },
43
  'gyrA': {
@@ -52,6 +57,9 @@ RESISTANCE_GENES = {
52
  }
53
  }
54
 
 
 
 
55
  def read_fasta_file(file_path):
56
  """Read a FASTA file from disk"""
57
  try:
@@ -75,96 +83,203 @@ def read_fasta_from_upload(uploaded_file):
75
  st.error(f"Error reading uploaded file: {str(e)}")
76
  return None
77
 
 
 
 
78
  def extract_gene_region(genome_seq, gene_start, gene_end):
79
- """Extract a gene region with additional context"""
80
  try:
81
  flank = 200
82
  start = max(0, gene_start - flank)
83
  end = min(len(genome_seq), gene_end + flank)
84
  extracted_seq = genome_seq[start:end]
85
- st.write(f"Extracted sequence length: {len(extracted_seq)}bp")
86
  return extracted_seq, start
87
  except Exception as e:
88
  st.error(f"Error extracting gene region: {str(e)}")
89
  return None, None
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  def find_mutations_with_context(ref_seq, query_seq, gene_start, gene_end, offset=0):
92
- """Find mutations with sequence context"""
 
 
 
 
93
  try:
94
- st.write(f"Aligning sequences (lengths: ref={len(ref_seq)}, query={len(query_seq)})")
95
-
96
- alignments = pairwise2.align.globalms(ref_seq, query_seq,
97
- match=2,
98
- mismatch=-3,
99
- open=-10,
100
- extend=-0.5)
101
 
102
  if not alignments:
103
  st.warning("No alignments found")
104
- return []
105
 
 
106
  alignment = alignments[0]
107
  ref_aligned, query_aligned = alignment[0], alignment[1]
108
-
109
- st.write(f"Alignment lengths: ref={len(ref_aligned)}, query={len(query_aligned)}")
110
-
111
- mutations = []
112
- real_pos = 0
113
-
 
 
114
  for i in range(len(ref_aligned)):
115
- if ref_aligned[i] != '-':
116
- real_pos += 1
117
-
118
- if ref_aligned[i] != query_aligned[i]:
119
- adj_pos = offset + real_pos
120
- if gene_start <= adj_pos <= gene_end:
121
- mut = {
122
- 'position': adj_pos,
123
- 'gene_position': adj_pos - gene_start + 1,
124
- 'ref_base': ref_aligned[i],
125
- 'query_base': query_aligned[i] if query_aligned[i] != '-' else 'None',
126
- 'type': 'SNP' if ref_aligned[i] != '-' and query_aligned[i] != '-' else 'INDEL',
127
- 'codon_position': (real_pos - 1) % 3 + 1,
128
- 'context': {
129
- 'ref': ref_aligned[max(0,i-5):i] + '[' + ref_aligned[i] + ']' + ref_aligned[i+1:i+6],
130
- 'query': query_aligned[max(0,i-5):i] + '[' + query_aligned[i] + ']' + query_aligned[i+1:i+6]
131
- }
132
- }
133
- mutations.append(mut)
 
 
 
 
 
 
 
 
 
134
 
135
- st.write(f"Found {len(mutations)} mutations")
136
- return mutations
 
 
137
  except Exception as e:
138
  st.error(f"Error in mutation analysis: {str(e)}")
139
- return []
 
 
 
 
 
 
 
 
140
 
141
- def analyze_resistance(mutations, gene_info):
142
- """Analyze mutations for drug resistance patterns"""
143
  resistance_found = []
144
-
145
- st.write(f"Analyzing {len(mutations)} mutations for resistance patterns")
146
-
147
- for mut in mutations:
148
- st.write(f"Mutation at position {mut['position']}: {mut['ref_base']} -> {mut['query_base']}")
149
- codon_pos = str(mut['gene_position'] // 3 + 1)
150
- if codon_pos in gene_info['mutations']:
151
- pattern = gene_info['mutations'][codon_pos]
152
- if mut['ref_base'] == pattern['from'] and mut['query_base'] in pattern['to']:
153
- resistance_found.append({
154
- 'position': codon_pos,
155
- 'change': f"{pattern['from']}{codon_pos}{mut['query_base']}",
156
- 'frequency': pattern['freq'],
157
- 'confidence': pattern['confidence']
158
- })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
  return resistance_found
161
 
 
 
 
162
  def main():
163
- st.title("M. tuberculosis Drug Resistance Analysis")
164
 
165
  st.markdown("""
166
  ### Automated Drug Resistance Analysis Tool
167
  Upload your query genome (clinical isolate) in FASTA format for comparison with H37Rv reference.
 
 
 
168
  """)
169
 
170
  # Debug mode toggle
@@ -180,101 +295,122 @@ def main():
180
 
181
  query_file = st.file_uploader("Upload Query Genome (FASTA)", type=['fasta', 'fa'])
182
 
183
- if query_file:
184
- if st.button("Analyze Drug Resistance"):
185
- query_genome = read_fasta_from_upload(query_file)
186
- if query_genome:
187
- st.success(f"Query genome loaded successfully (length: {len(query_genome)}bp)")
 
 
 
 
 
 
 
 
 
 
 
188
 
189
- # Analysis progress tracking
190
- progress_bar = st.progress(0)
191
- status_text = st.empty()
192
 
193
- # Store all results
194
- all_results = {}
 
195
 
196
- # Analyze each gene
197
- for i, (gene, info) in enumerate(RESISTANCE_GENES.items()):
198
- status_text.text(f"Analyzing {gene} ({info['drug']})...")
199
- progress_bar.progress((i + 1) / len(RESISTANCE_GENES))
 
 
 
200
 
201
- if debug_mode:
202
- st.subheader(f"Analyzing {gene}")
203
- st.write(f"Gene region: {info['start']}-{info['end']}")
204
 
205
- # Extract regions
206
- ref_region, ref_start = extract_gene_region(ref_genome, info['start'], info['end'])
207
- query_region, _ = extract_gene_region(query_genome, info['start'], info['end'])
 
208
 
209
- if ref_region and query_region:
210
- # Find mutations
211
- mutations = find_mutations_with_context(
212
- ref_region, query_region,
213
- info['start'], info['end'],
214
- ref_start
215
- )
216
-
217
- # Analyze resistance
218
- resistance = analyze_resistance(mutations, info)
219
-
220
- all_results[gene] = {
221
- 'mutations': mutations,
222
- 'resistance': resistance
223
- }
224
 
225
- if debug_mode:
226
- st.write(f"Found {len(mutations)} mutations")
227
- st.write(f"Identified {len(resistance)} resistance patterns")
228
- else:
229
- st.error(f"Failed to analyze {gene}")
 
 
 
 
 
 
 
 
 
 
230
 
231
- # Clear progress indicators
232
- progress_bar.empty()
233
- status_text.empty()
234
 
235
- # Display Results
236
- st.header("Analysis Results")
 
 
237
 
238
- # Show results for each gene
 
 
 
 
 
 
 
 
 
 
239
  for gene, results in all_results.items():
240
- st.subheader(f"{gene} Analysis")
241
- info = RESISTANCE_GENES[gene]
242
-
243
- st.write(f"Drug: {info['drug']}")
244
- st.write(f"Total mutations found: {len(results['mutations'])}")
245
-
246
- if results['mutations']:
247
- mutations_df = pd.DataFrame(results['mutations'])
248
- st.write("All mutations found:")
249
- st.dataframe(mutations_df)
250
-
251
- if results['resistance']:
252
- st.warning(f"Potential resistance mutations found in {gene}")
253
- resistance_df = pd.DataFrame(results['resistance'])
254
- st.dataframe(resistance_df)
255
- else:
256
- st.info(f"No known resistance mutations found in {gene}")
 
 
 
 
 
 
 
257
 
258
- # Download complete results
259
- if st.button("Download Complete Analysis"):
260
- # Create detailed report DataFrame
261
- report_data = []
262
- for gene, results in all_results.items():
263
- for mut in results['mutations']:
264
- report_data.append({
265
- 'Gene': gene,
266
- 'Drug': RESISTANCE_GENES[gene]['drug'],
267
- **mut
268
- })
269
-
270
- report_df = pd.DataFrame(report_data)
271
- csv = report_df.to_csv(index=False)
272
- st.download_button(
273
- "Download Full Report (CSV)",
274
- csv,
275
- "mtb_analysis_report.csv",
276
- "text/csv"
277
- )
278
 
 
279
  if __name__ == "__main__":
280
- main()
 
1
  import streamlit as st
2
  from Bio import pairwise2
3
+ from Bio.Seq import Seq
4
  import re
5
  from collections import defaultdict
6
  import pandas as pd
7
  import plotly.express as px
8
  import plotly.graph_objects as go
9
 
10
+ # -------------------------------------------------
11
+ # 1. Define important gene regions and their associated resistance patterns
12
+ # -------------------------------------------------
13
  RESISTANCE_GENES = {
14
  'rpoB': {
15
  'start': 759807,
 
17
  'description': 'RNA polymerase β subunit',
18
  'drug': 'Rifampicin',
19
  'mutations': {
20
+ # Example: codon 531: from S -> L
21
  '531': {'from': 'S', 'to': ['L'], 'freq': 'High', 'confidence': 'High'},
22
  '526': {'from': 'H', 'to': ['Y', 'D', 'R'], 'freq': 'High', 'confidence': 'High'},
23
  '516': {'from': 'D', 'to': ['V', 'G'], 'freq': 'Moderate', 'confidence': 'High'},
 
40
  'description': 'Enoyl-ACP reductase',
41
  'drug': 'Isoniazid/Ethionamide',
42
  'mutations': {
43
+ # Negative positions typically refer to promoter/regulatory sites. Compare nucleotides directly.
44
  '-15': {'from': 'C', 'to': ['T'], 'freq': 'High', 'confidence': 'High'},
45
+ '94': {'from': 'S', 'to': ['A'], 'freq': 'Moderate', 'confidence': 'High'}
46
  }
47
  },
48
  'gyrA': {
 
57
  }
58
  }
59
 
60
+ # -------------------------------------------------
61
+ # 2. File reading functions
62
+ # -------------------------------------------------
63
  def read_fasta_file(file_path):
64
  """Read a FASTA file from disk"""
65
  try:
 
83
  st.error(f"Error reading uploaded file: {str(e)}")
84
  return None
85
 
86
+ # -------------------------------------------------
87
+ # 3. Region extraction function
88
+ # -------------------------------------------------
89
  def extract_gene_region(genome_seq, gene_start, gene_end):
90
+ """Extract a gene region with additional 200bp on each side for alignment context."""
91
  try:
92
  flank = 200
93
  start = max(0, gene_start - flank)
94
  end = min(len(genome_seq), gene_end + flank)
95
  extracted_seq = genome_seq[start:end]
96
+ st.write(f"Extracted sequence length: {len(extracted_seq)}bp (for region {gene_start}-{gene_end})")
97
  return extracted_seq, start
98
  except Exception as e:
99
  st.error(f"Error extracting gene region: {str(e)}")
100
  return None, None
101
 
102
+ # -------------------------------------------------
103
+ # 4. Codon-level extraction from aligned sequences
104
+ # -------------------------------------------------
105
+ def extract_codon_alignment(ref_aligned, query_aligned, gene_start, gene_end, offset):
106
+ """
107
+ Convert the nucleotide alignment into a list of codon diffs (ref_aa, query_aa, codon_number).
108
+ We skip codons that have a gap in the reference, because we can’t reliably translate them.
109
+ """
110
+ codon_list = []
111
+ real_pos = 0 # tracks how many non-gap reference bases we've seen
112
+
113
+ ref_codon = []
114
+ query_codon = []
115
+
116
+ for i in range(len(ref_aligned)):
117
+ ref_base = ref_aligned[i]
118
+ query_base = query_aligned[i]
119
+
120
+ # Only increment real_pos if the reference base is not a gap
121
+ if ref_base != '-':
122
+ real_pos += 1
123
+ ref_codon.append(ref_base)
124
+ query_codon.append(query_base if query_base != '-' else 'N') # 'N' for missing
125
+
126
+ # Once we have 3 bases for the reference, translate
127
+ if len(ref_codon) == 3:
128
+ # Example: If real_pos is 3, that means we just completed codon #1 for this region, etc.
129
+ codon_start_pos = offset + (real_pos - 3) # The first base of this codon in genome coords
130
+
131
+ # Check if at least part of this codon is in the gene boundaries
132
+ # Typically we want the entire codon to be within gene_start..gene_end
133
+ if (codon_start_pos >= gene_start) and (codon_start_pos + 2 <= gene_end):
134
+ ref_aa = str(Seq(''.join(ref_codon)).translate())
135
+ query_aa = str(Seq(''.join(query_codon)).translate())
136
+
137
+ # codon_number in the gene
138
+ gene_nt_pos = codon_start_pos - gene_start + 1 # nucleotide offset into the gene
139
+ # e.g., if gene_nt_pos is 1..3 => codon_number = 1, if 4..6 => codon_number = 2, etc.
140
+ codon_number = (gene_nt_pos - 1) // 3 + 1
141
+
142
+ if ref_aa != query_aa:
143
+ codon_list.append({
144
+ 'codon_number': codon_number,
145
+ 'ref_aa': ref_aa,
146
+ 'query_aa': query_aa
147
+ })
148
+
149
+ # Reset for the next codon
150
+ ref_codon = []
151
+ query_codon = []
152
+
153
+ return codon_list
154
+
155
+ # -------------------------------------------------
156
+ # 5. Find both codon-level and promoter-level mutations
157
+ # -------------------------------------------------
158
  def find_mutations_with_context(ref_seq, query_seq, gene_start, gene_end, offset=0):
159
+ """
160
+ 1) Align the nucleotide sequences for the gene region.
161
+ 2) Extract codon-level amino-acid differences for coding changes.
162
+ 3) Identify direct nucleotide changes for promoter or negative positions (like -15).
163
+ """
164
  try:
165
+ # Align the two nucleotide sequences
166
+ alignments = pairwise2.align.globalms(ref_seq, query_seq, match=2, mismatch=-3, open=-10, extend=-0.5)
 
 
 
 
 
167
 
168
  if not alignments:
169
  st.warning("No alignments found")
170
+ return {'codon_diffs': [], 'nt_diffs': []}
171
 
172
+ # Take the best-scoring alignment
173
  alignment = alignments[0]
174
  ref_aligned, query_aligned = alignment[0], alignment[1]
175
+
176
+ # 1) Extract codon-level diffs
177
+ codon_diffs = extract_codon_alignment(ref_aligned, query_aligned, gene_start, gene_end, offset)
178
+
179
+ # 2) Identify direct nucleotide differences for negative or regulatory positions
180
+ # We only care about positions that are outside the coding region or specifically listed as negative
181
+ nt_diffs = []
182
+ ref_pos = 0 # tracks real position in reference
183
  for i in range(len(ref_aligned)):
184
+ ref_base = ref_aligned[i]
185
+ query_base = query_aligned[i]
186
+
187
+ # only increment ref_pos if ref_base isn't a gap
188
+ if ref_base != '-':
189
+ ref_pos += 1
190
+ actual_genome_pos = offset + ref_pos # actual coordinate in entire genome
191
+
192
+ # Check if there's a mismatch
193
+ if ref_base != query_base and (query_base != '-'):
194
+ # If the position is < gene_start, it might be negative or promoter region
195
+ # Or if the position is > gene_end, it might be some flanking region
196
+ # We'll store it, and 'analyze_resistance' can figure out if it's relevant
197
+ if actual_genome_pos < gene_start or actual_genome_pos > gene_end:
198
+ # It's outside the coding region
199
+ nt_diffs.append({
200
+ 'genome_pos': actual_genome_pos,
201
+ 'ref_base': ref_base,
202
+ 'query_base': query_base
203
+ })
204
+ else:
205
+ # Even if it's inside the gene, it might be an in-frame insertion or something
206
+ # not forming a complete codon in the reference. We'll store it anyway.
207
+ nt_diffs.append({
208
+ 'genome_pos': actual_genome_pos,
209
+ 'ref_base': ref_base,
210
+ 'query_base': query_base
211
+ })
212
 
213
+ return {
214
+ 'codon_diffs': codon_diffs,
215
+ 'nt_diffs': nt_diffs
216
+ }
217
  except Exception as e:
218
  st.error(f"Error in mutation analysis: {str(e)}")
219
+ return {'codon_diffs': [], 'nt_diffs': []}
220
+
221
+ # -------------------------------------------------
222
+ # 6. Analyze the found mutations for known resistance patterns
223
+ # -------------------------------------------------
224
+ def analyze_resistance(mutation_data, gene_info):
225
+ """Analyze codon-level amino-acid diffs and any direct nucleotide diffs for known patterns."""
226
+ codon_diffs = mutation_data['codon_diffs'] # list of {codon_number, ref_aa, query_aa}
227
+ nt_diffs = mutation_data['nt_diffs'] # list of {genome_pos, ref_base, query_base}
228
 
 
 
229
  resistance_found = []
230
+
231
+ # We need to parse the dictionary keys in gene_info['mutations'] (they can be negative or numeric)
232
+ for key_str, pattern in gene_info['mutations'].items():
233
+ try:
234
+ key_val = int(key_str)
235
+ except ValueError:
236
+ # Should never happen if the dictionary is consistent, but just in case
237
+ continue
238
+
239
+ # If key_val > 0 => it's a codon-based mutation (like 531 for rpoB).
240
+ # If key_val <= 0 => it's a nucleotide-based mutation in promoter or upstream region (like -15).
241
+ if key_val > 0:
242
+ # Codon-based
243
+ for diff in codon_diffs:
244
+ if diff['codon_number'] == key_val:
245
+ # e.g. pattern['from'] = 'S', pattern['to'] = ['L']
246
+ if diff['ref_aa'] == pattern['from'] and diff['query_aa'] in pattern['to']:
247
+ resistance_found.append({
248
+ 'position': key_str,
249
+ 'change': f"{pattern['from']}{key_str}{diff['query_aa']}",
250
+ 'frequency': pattern['freq'],
251
+ 'confidence': pattern['confidence']
252
+ })
253
+ else:
254
+ # Nucleotide-based (promoter or upstream).
255
+ # We need to find an nt_diff at that offset from the gene_start.
256
+ # e.g. -15 => actual genome position = gene_start + (-15)
257
+ promoter_genome_pos = gene_info['start'] + key_val
258
+ for diff in nt_diffs:
259
+ if diff['genome_pos'] == promoter_genome_pos:
260
+ # Check if ref_base = pattern['from'], query_base in pattern['to']
261
+ if diff['ref_base'] == pattern['from'] and diff['query_base'] in pattern['to']:
262
+ resistance_found.append({
263
+ 'position': key_str,
264
+ 'change': f"{pattern['from']}{key_str}{diff['query_base']}",
265
+ 'frequency': pattern['freq'],
266
+ 'confidence': pattern['confidence']
267
+ })
268
 
269
  return resistance_found
270
 
271
+ # -------------------------------------------------
272
+ # 7. Main Streamlit App
273
+ # -------------------------------------------------
274
  def main():
275
+ st.title("M. tuberculosis Drug Resistance Analysis - FIXED VERSION")
276
 
277
  st.markdown("""
278
  ### Automated Drug Resistance Analysis Tool
279
  Upload your query genome (clinical isolate) in FASTA format for comparison with H37Rv reference.
280
+
281
+ **Note**: This version correctly checks *codon-based* amino-acid mutations (e.g., rpoB S531L)
282
+ and *nucleotide-based* promoter mutations (e.g., inhA -15C>T).
283
  """)
284
 
285
  # Debug mode toggle
 
295
 
296
  query_file = st.file_uploader("Upload Query Genome (FASTA)", type=['fasta', 'fa'])
297
 
298
+ if query_file and st.button("Analyze Drug Resistance"):
299
+ query_genome = read_fasta_from_upload(query_file)
300
+ if query_genome:
301
+ st.success(f"Query genome loaded successfully (length: {len(query_genome)}bp)")
302
+
303
+ # Analysis progress tracking
304
+ progress_bar = st.progress(0)
305
+ status_text = st.empty()
306
+
307
+ # Store all results
308
+ all_results = {}
309
+
310
+ # Analyze each gene
311
+ for i, (gene, info) in enumerate(RESISTANCE_GENES.items()):
312
+ status_text.text(f"Analyzing {gene} ({info['drug']})...")
313
+ progress_bar.progress((i + 1) / len(RESISTANCE_GENES))
314
 
315
+ if debug_mode:
316
+ st.subheader(f"Analyzing {gene}")
317
+ st.write(f"Gene region: {info['start']}-{info['end']}")
318
 
319
+ # Extract regions
320
+ ref_region, ref_start = extract_gene_region(ref_genome, info['start'], info['end'])
321
+ query_region, _ = extract_gene_region(query_genome, info['start'], info['end'])
322
 
323
+ if ref_region and query_region:
324
+ # Find mutations (codon-level + any promoter-level)
325
+ mutation_data = find_mutations_with_context(
326
+ ref_region, query_region,
327
+ info['start'], info['end'],
328
+ ref_start
329
+ )
330
 
331
+ # Analyze resistance
332
+ resistance = analyze_resistance(mutation_data, info)
 
333
 
334
+ all_results[gene] = {
335
+ 'mutation_data': mutation_data,
336
+ 'resistance': resistance
337
+ }
338
 
339
+ if debug_mode:
340
+ st.write(f"Codon-level differences: {len(mutation_data['codon_diffs'])}")
341
+ st.write(mutation_data['codon_diffs'])
342
+ st.write(f"Nucleotide-level differences: {len(mutation_data['nt_diffs'])}")
343
+ st.write(mutation_data['nt_diffs'])
 
 
 
 
 
 
 
 
 
 
344
 
345
+ st.write(f"Identified {len(resistance)} resistance patterns")
346
+ else:
347
+ st.error(f"Failed to analyze {gene}")
348
+
349
+ # Clear progress indicators
350
+ progress_bar.empty()
351
+ status_text.empty()
352
+
353
+ # Display Results
354
+ st.header("Analysis Results")
355
+
356
+ # Show results for each gene
357
+ for gene, results in all_results.items():
358
+ st.subheader(f"{gene} Analysis")
359
+ info = RESISTANCE_GENES[gene]
360
 
361
+ st.write(f"Drug: {info['drug']}")
 
 
362
 
363
+ num_codon_diffs = len(results['mutation_data']['codon_diffs'])
364
+ num_nt_diffs = len(results['mutation_data']['nt_diffs'])
365
+ st.write(f"Total codon-level differences found: {num_codon_diffs}")
366
+ st.write(f"Total nucleotide-level differences found: {num_nt_diffs}")
367
 
368
+ if results['resistance']:
369
+ st.warning(f"Potential resistance mutations found in {gene}")
370
+ resistance_df = pd.DataFrame(results['resistance'])
371
+ st.dataframe(resistance_df)
372
+ else:
373
+ st.info(f"No known resistance mutations found in {gene}")
374
+
375
+ # Download complete results
376
+ if st.button("Download Complete Analysis"):
377
+ # Create detailed report DataFrame
378
+ report_data = []
379
  for gene, results in all_results.items():
380
+ # Store codon diffs
381
+ for diff in results['mutation_data']['codon_diffs']:
382
+ report_data.append({
383
+ 'Gene': gene,
384
+ 'Drug': RESISTANCE_GENES[gene]['drug'],
385
+ 'Type': 'Codon_diff',
386
+ **diff
387
+ })
388
+ # Store nt diffs
389
+ for diff in results['mutation_data']['nt_diffs']:
390
+ report_data.append({
391
+ 'Gene': gene,
392
+ 'Drug': RESISTANCE_GENES[gene]['drug'],
393
+ 'Type': 'Nucleotide_diff',
394
+ **diff
395
+ })
396
+ # Store recognized resistance mutations
397
+ for res in results['resistance']:
398
+ report_data.append({
399
+ 'Gene': gene,
400
+ 'Drug': RESISTANCE_GENES[gene]['drug'],
401
+ 'Type': 'Resistance',
402
+ **res
403
+ })
404
 
405
+ report_df = pd.DataFrame(report_data)
406
+ csv = report_df.to_csv(index=False)
407
+ st.download_button(
408
+ "Download Full Report (CSV)",
409
+ csv,
410
+ "mtb_analysis_report_fixed.csv",
411
+ "text/csv"
412
+ )
 
 
 
 
 
 
 
 
 
 
 
 
413
 
414
+ # Entry point
415
  if __name__ == "__main__":
416
+ main()