lyimo commited on
Commit
25e7f56
1 Parent(s): 14aefdd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -0
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import openai
3
+ from sentence_transformers import SentenceTransformer
4
+ from sklearn.metrics.pairwise import cosine_similarity
5
+ import numpy as np
6
+ import pandas as pd
7
+ import gradio as gr
8
+
9
+ # Load pre-trained Sentence Transformer model
10
+ model = SentenceTransformer('all-MiniLM-L6-v2')
11
+
12
+ # Load questions and answers from the CSV file
13
+ df = pd.read_csv('combined_questions_and_answers.csv')
14
+
15
+ # Encode all questions in the dataset
16
+ question_embeddings = model.encode(df['Question'].tolist())
17
+
18
+ # OpenAI API key setup
19
+ openai.api_key = os.getenv("OPENAI_API_KEY")
20
+
21
+ # Function to call OpenAI API to refine and translate text
22
+ def refine_text(prompt):
23
+ response = openai.ChatCompletion.create(
24
+ model="gpt-4",
25
+ messages=[
26
+ {"role": "system", "content": "You are an assistant that refines text to make it conversational and natural. If the question is in Swahili, respond in Swahili."},
27
+ {"role": "user", "content": prompt}
28
+ ],
29
+ max_tokens=800,
30
+ n=1,
31
+ stop=None,
32
+ temperature=0.7
33
+ )
34
+ return response['choices'][0]['message']['content']
35
+
36
+ # Function to find the most similar question and provide the answer
37
+ def get_answer(user_question, threshold=0.80):
38
+ # Encode the user question
39
+ user_embedding = model.encode(user_question)
40
+
41
+ # Calculate cosine similarities
42
+ similarities = cosine_similarity([user_embedding], question_embeddings)
43
+
44
+ # Find the most similar question
45
+ max_similarity = np.max(similarities)
46
+ if max_similarity > threshold:
47
+ # Get the index of the most similar question
48
+ similar_question_idx = np.argmax(similarities)
49
+ # Retrieve the corresponding answer
50
+ answer = df.iloc[similar_question_idx]['Answer']
51
+ # Refine the answer using GPT-4
52
+ refined_answer = refine_text(f"Refine this answer: {answer}")
53
+ return refined_answer, max_similarity
54
+ else:
55
+ # Generate an answer using GPT-4 if no similar question is found
56
+ refined_answer = refine_text(f"Answer this question: {user_question}")
57
+ return refined_answer, max_similarity
58
+
59
+ # Gradio app
60
+ def gradio_app(user_question):
61
+ answer, similarity = get_answer(user_question)
62
+ return f"Similarity: {similarity}\nAnswer: {answer}"
63
+
64
+ # Launch the Gradio app
65
+ iface = gr.Interface(
66
+ fn=gradio_app,
67
+ inputs=gr.inputs.Textbox(label="Enter your question"),
68
+ outputs=gr.outputs.Textbox(label="Answer"),
69
+ title="Blood Donation Q&A",
70
+ description="Ask questions related to blood donation and get answers.",
71
+ )
72
+
73
+ iface.launch()