File size: 2,429 Bytes
cdd279d
a52de3d
cdd279d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a52de3d
0b2e271
 
 
 
 
cdd279d
a52de3d
cdd279d
a52de3d
 
 
 
 
cdd279d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a52de3d
cdd279d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import pandas as pd
import gradio as gr

# Load pre-trained Sentence Transformer model
model = SentenceTransformer('LaBSE')

# Load questions and answers from the CSV file
df = pd.read_csv('combined_questions_and_answers.csv')

# Encode all questions in the dataset
question_embeddings = model.encode(df['Question'].tolist())

# Hugging Face API details for Meta-Llama 3B
api_key = os.getenv("HUGGINGFACE_API_KEY")
if not api_key:
    raise ValueError("Hugging Face API key not found in environment variables. Please set the HUGGINGFACE_API_KEY environment variable.")

pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct", token=api_key)

# Function to refine and translate text using Meta-Llama 3B
def refine_text(prompt):
    messages = [
        {"role": "user", "content": prompt},
    ]
    response = pipe(messages)
    return response[0]['generated_text']

# Function to find the most similar question and provide the answer
def get_answer(user_question, threshold=0.30):
    # Encode the user question
    user_embedding = model.encode(user_question)

    # Calculate cosine similarities
    similarities = cosine_similarity([user_embedding], question_embeddings)

    # Find the most similar question
    max_similarity = np.max(similarities)
    if max_similarity > threshold:
        # Get the index of the most similar question
        similar_question_idx = np.argmax(similarities)
        # Retrieve the corresponding answer
        answer = df.iloc[similar_question_idx]['Answer']
        # Refine the answer using Meta-Llama 3B
        refined_answer = refine_text(f"Refine this answer: {answer}")
        return refined_answer, max_similarity
    else:
        return "The question appears to be out of domain. Kindly ask questions related to blood donations.", max_similarity

# Gradio app
def gradio_app(user_question):
    answer, similarity = get_answer(user_question)
    return f"Similarity: {similarity}\nAnswer: {answer}"

# Launch the Gradio app
iface = gr.Interface(
    fn=gradio_app,
    inputs=gr.Textbox(label="Enter your question"),
    outputs=gr.Textbox(label="Answer"),
    title="Blood Donation Q&A",
    description="Ask questions related to blood donation and get answers.",
)

iface.launch()