Spaces:
Runtime error
Runtime error
File size: 2,559 Bytes
cdd279d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import os
import requests
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import pandas as pd
import gradio as gr
# Load pre-trained Sentence Transformer model
model = SentenceTransformer('LaBSE')
# Load questions and answers from the CSV file
df = pd.read_csv('combined_questions_and_answers.csv')
# Encode all questions in the dataset
question_embeddings = model.encode(df['Question'].tolist())
# Hugging Face API details for Meta-Llama 70B
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B"
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
# Function to call Hugging Face API to refine and translate text
def refine_text(prompt):
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 800,
"temperature": 0.7
}
}
response = requests.post(API_URL, headers=headers, json=payload)
response_json = response.json()
if isinstance(response_json, list) and len(response_json) > 0:
return response_json[0].get('generated_text', '')
return "Error in refining text."
# Function to find the most similar question and provide the answer
def get_answer(user_question, threshold=0.30):
# Encode the user question
user_embedding = model.encode(user_question)
# Calculate cosine similarities
similarities = cosine_similarity([user_embedding], question_embeddings)
# Find the most similar question
max_similarity = np.max(similarities)
if max_similarity > threshold:
# Get the index of the most similar question
similar_question_idx = np.argmax(similarities)
# Retrieve the corresponding answer
answer = df.iloc[similar_question_idx]['Answer']
# Refine the answer using Meta-Llama 70B
refined_answer = refine_text(f"Refine this answer: {answer}")
return refined_answer, max_similarity
else:
return "The question appears to be out of domain. Kindly ask questions related to blood donations.", max_similarity
# Gradio app
def gradio_app(user_question):
answer, similarity = get_answer(user_question)
return f"Similarity: {similarity}\nAnswer: {answer}"
# Launch the Gradio app
iface = gr.Interface(
fn=gradio_app,
inputs=gr.Textbox(label="Enter your question"),
outputs=gr.Textbox(label="Answer"),
title="Blood Donation Q&A",
description="Ask questions related to blood donation and get answers.",
)
iface.launch() |