lyimo's picture
Update app.py
172598c verified
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import pandas as pd
# Load pre-trained Sentence Transformer model
model_sentence_transformer = SentenceTransformer('LaBSE')
# Load questions and answers from the CSV file
df = pd.read_csv('combined_questions_and_answers.csv')
# Encode all questions in the dataset
question_embeddings = model_sentence_transformer.encode(df['Question'].tolist())
# Hugging Face API details for Meta-Llama 3B
HF_TOKEN = os.environ.get("HUGGINGFACE_API_KEY", None)
if not HF_TOKEN:
raise ValueError("Hugging Face API key not found in environment variables. Please set the HUGGINGFACE_API_KEY environment variable.")
# Load the tokenizer and model with authentication
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", use_auth_token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", use_auth_token=HF_TOKEN, device_map="auto")
# Function to refine and translate text using Meta-Llama 3B
def refine_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Function to find the most similar question and provide the answer
def get_answer(user_question, threshold=0.30):
# Encode the user question
user_embedding = model_sentence_transformer.encode(user_question)
# Calculate cosine similarities
similarities = cosine_similarity([user_embedding], question_embeddings)
# Find the most similar question
max_similarity = np.max(similarities)
if (max_similarity > threshold):
# Get the index of the most similar question
similar_question_idx = np.argmax(similarities)
# Retrieve the corresponding answer
answer = df.iloc[similar_question_idx]['Answer']
# Refine the answer using Meta-Llama 3B
refined_answer = refine_text(f"Refine this answer: {answer}")
return refined_answer, max_similarity
else:
return "The question appears to be out of domain. Kindly ask questions related to blood donations.", max_similarity
# Gradio app
def gradio_app(user_question):
answer, similarity = get_answer(user_question)
return f"Similarity: {similarity}\nAnswer: {answer}"
# Launch the Gradio app
iface = gr.Interface(
fn=gradio_app,
inputs=gr.Textbox(label="Enter your question"),
outputs=gr.Textbox(label="Answer"),
title="Blood Donation Q&A",
description="Ask questions related to blood donation and get answers.",
)
if __name__ == "__main__":
iface.launch()