import os from transformers import pipeline from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import numpy as np import pandas as pd import gradio as gr # Load pre-trained Sentence Transformer model model = SentenceTransformer('LaBSE') # Load questions and answers from the CSV file df = pd.read_csv('combined_questions_and_answers.csv') # Encode all questions in the dataset question_embeddings = model.encode(df['Question'].tolist()) # Hugging Face API details for Meta-Llama 3B api_key = os.getenv("HUGGINGFACE_API_KEY") if not api_key: raise ValueError("Hugging Face API key not found in environment variables. Please set the HUGGINGFACE_API_KEY environment variable.") pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct", token=api_key) # Function to refine and translate text using Meta-Llama 3B def refine_text(prompt): messages = [ {"role": "user", "content": prompt}, ] response = pipe(messages) return response[0]['generated_text'] # Function to find the most similar question and provide the answer def get_answer(user_question, threshold=0.30): # Encode the user question user_embedding = model.encode(user_question) # Calculate cosine similarities similarities = cosine_similarity([user_embedding], question_embeddings) # Find the most similar question max_similarity = np.max(similarities) if max_similarity > threshold: # Get the index of the most similar question similar_question_idx = np.argmax(similarities) # Retrieve the corresponding answer answer = df.iloc[similar_question_idx]['Answer'] # Refine the answer using Meta-Llama 3B refined_answer = refine_text(f"Refine this answer: {answer}") return refined_answer, max_similarity else: return "The question appears to be out of domain. Kindly ask questions related to blood donations.", max_similarity # Gradio app def gradio_app(user_question): answer, similarity = get_answer(user_question) return f"Similarity: {similarity}\nAnswer: {answer}" # Launch the Gradio app iface = gr.Interface( fn=gradio_app, inputs=gr.Textbox(label="Enter your question"), outputs=gr.Textbox(label="Answer"), title="Blood Donation Q&A", description="Ask questions related to blood donation and get answers.", ) iface.launch()