import os import requests from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import numpy as np import pandas as pd import gradio as gr # Load pre-trained Sentence Transformer model model = SentenceTransformer('LaBSE') # Load questions and answers from the CSV file df = pd.read_csv('combined_questions_and_answers.csv') # Encode all questions in the dataset question_embeddings = model.encode(df['Question'].tolist()) # Hugging Face API details for Meta-Llama 70B API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B" headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"} # Function to call Hugging Face API to refine and translate text def refine_text(prompt): payload = { "inputs": prompt, "parameters": { "max_new_tokens": 800, "temperature": 0.7 } } response = requests.post(API_URL, headers=headers, json=payload) response_json = response.json() if isinstance(response_json, list) and len(response_json) > 0: return response_json[0].get('generated_text', '') return "Error in refining text." # Function to find the most similar question and provide the answer def get_answer(user_question, threshold=0.30): # Encode the user question user_embedding = model.encode(user_question) # Calculate cosine similarities similarities = cosine_similarity([user_embedding], question_embeddings) # Find the most similar question max_similarity = np.max(similarities) if max_similarity > threshold: # Get the index of the most similar question similar_question_idx = np.argmax(similarities) # Retrieve the corresponding answer answer = df.iloc[similar_question_idx]['Answer'] # Refine the answer using Meta-Llama 70B refined_answer = refine_text(f"Refine this answer: {answer}") return refined_answer, max_similarity else: return "The question appears to be out of domain. Kindly ask questions related to blood donations.", max_similarity # Gradio app def gradio_app(user_question): answer, similarity = get_answer(user_question) return f"Similarity: {similarity}\nAnswer: {answer}" # Launch the Gradio app iface = gr.Interface( fn=gradio_app, inputs=gr.Textbox(label="Enter your question"), outputs=gr.Textbox(label="Answer"), title="Blood Donation Q&A", description="Ask questions related to blood donation and get answers.", ) iface.launch()