Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
from Bio import pairwise2
|
6 |
+
from collections import defaultdict
|
7 |
+
import re
|
8 |
+
|
9 |
+
# Define important gene regions (positions based on H37Rv)
|
10 |
+
IMPORTANT_GENES = {
|
11 |
+
'rpoB': {'range': (759807, 763325), 'description': 'RNA polymerase β subunit (Rifampicin resistance)'},
|
12 |
+
'katG': {'range': (2153889, 2156111), 'description': 'Catalase-peroxidase (Isoniazid resistance)'},
|
13 |
+
'inhA': {'range': (1674202, 1675011), 'description': 'Enoyl-ACP reductase (Isoniazid resistance)'},
|
14 |
+
'gyrA': {'range': (7302, 9818), 'description': 'DNA gyrase subunit A (Fluoroquinolone resistance)'}
|
15 |
+
}
|
16 |
+
|
17 |
+
def read_fasta_from_upload(uploaded_file):
|
18 |
+
"""Read a FASTA file from Streamlit upload"""
|
19 |
+
content = uploaded_file.getvalue().decode('utf-8').strip()
|
20 |
+
parts = content.split('\n', 1)
|
21 |
+
sequence = ''.join(parts[1].split('\n')).replace(' ', '')
|
22 |
+
return sequence.upper()
|
23 |
+
|
24 |
+
def split_genome_into_chunks(sequence, chunk_size=10000, overlap=100):
|
25 |
+
"""Split genome into manageable chunks for alignment"""
|
26 |
+
chunks = []
|
27 |
+
positions = []
|
28 |
+
for i in range(0, len(sequence), chunk_size - overlap):
|
29 |
+
chunk = sequence[i:i + chunk_size]
|
30 |
+
chunks.append(chunk)
|
31 |
+
positions.append(i)
|
32 |
+
return chunks, positions
|
33 |
+
|
34 |
+
def find_mutations_in_chunk(ref_chunk, query_chunk, chunk_start):
|
35 |
+
"""Find mutations in a genome chunk"""
|
36 |
+
mutations = []
|
37 |
+
|
38 |
+
alignments = pairwise2.align.globalms(ref_chunk, query_chunk,
|
39 |
+
match=2,
|
40 |
+
mismatch=-3,
|
41 |
+
open=-10,
|
42 |
+
extend=-0.5)
|
43 |
+
|
44 |
+
if not alignments:
|
45 |
+
return mutations
|
46 |
+
|
47 |
+
alignment = alignments[0]
|
48 |
+
ref_aligned, query_aligned = alignment[0], alignment[1]
|
49 |
+
|
50 |
+
real_pos = 0
|
51 |
+
for i in range(len(ref_aligned)):
|
52 |
+
if ref_aligned[i] != '-':
|
53 |
+
real_pos += 1
|
54 |
+
|
55 |
+
if ref_aligned[i] != query_aligned[i]:
|
56 |
+
abs_pos = chunk_start + real_pos - 1
|
57 |
+
mut = {
|
58 |
+
'position': abs_pos,
|
59 |
+
'ref_base': ref_aligned[i],
|
60 |
+
'query_base': query_aligned[i] if query_aligned[i] != '-' else 'None',
|
61 |
+
'type': 'SNP' if ref_aligned[i] != '-' and query_aligned[i] != '-' else 'INDEL',
|
62 |
+
'context': {
|
63 |
+
'ref': ref_aligned[max(0,i-5):i] + '[' + ref_aligned[i] + ']' + ref_aligned[i+1:i+6],
|
64 |
+
'query': query_aligned[max(0,i-5):i] + '[' + query_aligned[i] + ']' + query_aligned[i+1:i+6]
|
65 |
+
}
|
66 |
+
}
|
67 |
+
|
68 |
+
# Check if mutation is in an important gene
|
69 |
+
for gene, info in IMPORTANT_GENES.items():
|
70 |
+
start, end = info['range']
|
71 |
+
if start <= abs_pos <= end:
|
72 |
+
mut['gene'] = gene
|
73 |
+
mut['gene_position'] = abs_pos - start + 1
|
74 |
+
mut['gene_description'] = info['description']
|
75 |
+
|
76 |
+
mutations.append(mut)
|
77 |
+
|
78 |
+
return mutations
|
79 |
+
|
80 |
+
def visualize_mutations(mutations, genome_length):
|
81 |
+
"""Create mutation visualization plots"""
|
82 |
+
# Prepare data for gene region visualization
|
83 |
+
gene_regions = []
|
84 |
+
for gene, info in IMPORTANT_GENES.items():
|
85 |
+
start, end = info['range']
|
86 |
+
gene_regions.append({
|
87 |
+
'gene': gene,
|
88 |
+
'start': start,
|
89 |
+
'end': end,
|
90 |
+
'y': 1
|
91 |
+
})
|
92 |
+
|
93 |
+
# Create genome-wide plot
|
94 |
+
fig = go.Figure()
|
95 |
+
|
96 |
+
# Add gene regions as rectangles
|
97 |
+
for region in gene_regions:
|
98 |
+
fig.add_trace(go.Scatter(
|
99 |
+
x=[region['start'], region['end']],
|
100 |
+
y=[region['y'], region['y']],
|
101 |
+
mode='lines',
|
102 |
+
name=region['gene'],
|
103 |
+
line=dict(width=10),
|
104 |
+
hoverinfo='text',
|
105 |
+
hovertext=f"{region['gene']}: {region['start']}-{region['end']}"
|
106 |
+
))
|
107 |
+
|
108 |
+
# Add mutations as scatter points
|
109 |
+
mutation_data = pd.DataFrame(mutations)
|
110 |
+
if not mutation_data.empty:
|
111 |
+
fig.add_trace(go.Scatter(
|
112 |
+
x=mutation_data['position'],
|
113 |
+
y=[1.1] * len(mutation_data),
|
114 |
+
mode='markers',
|
115 |
+
name='Mutations',
|
116 |
+
marker=dict(
|
117 |
+
color=['red' if t == 'SNP' else 'blue' for t in mutation_data['type']],
|
118 |
+
size=8
|
119 |
+
),
|
120 |
+
hoverinfo='text',
|
121 |
+
hovertext=mutation_data.apply(
|
122 |
+
lambda x: f"Position: {x['position']}<br>"
|
123 |
+
f"Type: {x['type']}<br>"
|
124 |
+
f"Change: {x['ref_base']}->{x['query_base']}",
|
125 |
+
axis=1
|
126 |
+
)
|
127 |
+
))
|
128 |
+
|
129 |
+
fig.update_layout(
|
130 |
+
title="Genome-wide Mutation Distribution",
|
131 |
+
xaxis_title="Genome Position",
|
132 |
+
yaxis_visible=False,
|
133 |
+
showlegend=True,
|
134 |
+
height=400
|
135 |
+
)
|
136 |
+
|
137 |
+
return fig
|
138 |
+
|
139 |
+
def analyze_mutations(mutations):
|
140 |
+
"""Generate comprehensive mutation statistics"""
|
141 |
+
stats = {
|
142 |
+
'total_mutations': len(mutations),
|
143 |
+
'snps': len([m for m in mutations if m['type'] == 'SNP']),
|
144 |
+
'indels': len([m for m in mutations if m['type'] == 'INDEL']),
|
145 |
+
'by_gene': defaultdict(int),
|
146 |
+
'important_mutations': []
|
147 |
+
}
|
148 |
+
|
149 |
+
for mut in mutations:
|
150 |
+
if 'gene' in mut:
|
151 |
+
stats['by_gene'][mut['gene']] += 1
|
152 |
+
stats['important_mutations'].append(mut)
|
153 |
+
|
154 |
+
return stats
|
155 |
+
|
156 |
+
def main():
|
157 |
+
st.title("M. tuberculosis Full Genome Comparison")
|
158 |
+
|
159 |
+
st.markdown("""
|
160 |
+
This tool performs whole-genome comparison of M. tuberculosis strains, identifying mutations
|
161 |
+
and analyzing resistance-associated genes.
|
162 |
+
|
163 |
+
**Instructions:**
|
164 |
+
1. Upload your reference genome (typically H37Rv)
|
165 |
+
2. Upload your query genome (clinical isolate)
|
166 |
+
3. Configure analysis parameters if needed
|
167 |
+
4. Run the analysis
|
168 |
+
""")
|
169 |
+
|
170 |
+
# File upload
|
171 |
+
col1, col2 = st.columns(2)
|
172 |
+
with col1:
|
173 |
+
reference_file = st.file_uploader("Reference Genome (FASTA)", type=['fasta', 'fa'])
|
174 |
+
with col2:
|
175 |
+
query_file = st.file_uploader("Query Genome (FASTA)", type=['fasta', 'fa'])
|
176 |
+
|
177 |
+
# Analysis parameters
|
178 |
+
with st.expander("Advanced Settings"):
|
179 |
+
chunk_size = st.slider("Analysis chunk size (bp)", 5000, 20000, 10000, 1000)
|
180 |
+
overlap = st.slider("Chunk overlap (bp)", 50, 200, 100, 10)
|
181 |
+
|
182 |
+
if reference_file and query_file:
|
183 |
+
if st.button("Run Analysis"):
|
184 |
+
with st.spinner("Analyzing genomes..."):
|
185 |
+
try:
|
186 |
+
# Read sequences
|
187 |
+
ref_genome = read_fasta_from_upload(reference_file)
|
188 |
+
query_genome = read_fasta_from_upload(query_file)
|
189 |
+
|
190 |
+
# Show progress
|
191 |
+
progress_bar = st.progress(0)
|
192 |
+
status = st.empty()
|
193 |
+
|
194 |
+
# Split genomes
|
195 |
+
status.text("Splitting genomes into chunks...")
|
196 |
+
ref_chunks, chunk_positions = split_genome_into_chunks(ref_genome, chunk_size, overlap)
|
197 |
+
query_chunks, _ = split_genome_into_chunks(query_genome, chunk_size, overlap)
|
198 |
+
|
199 |
+
# Process chunks
|
200 |
+
status.text("Analyzing mutations...")
|
201 |
+
all_mutations = []
|
202 |
+
total_chunks = len(ref_chunks)
|
203 |
+
|
204 |
+
for i, (ref_chunk, query_chunk, chunk_start) in enumerate(zip(ref_chunks, query_chunks, chunk_positions)):
|
205 |
+
progress_bar.progress((i + 1) / total_chunks)
|
206 |
+
mutations = find_mutations_in_chunk(ref_chunk, query_chunk, chunk_start)
|
207 |
+
all_mutations.extend(mutations)
|
208 |
+
|
209 |
+
# Analysis complete
|
210 |
+
progress_bar.empty()
|
211 |
+
status.empty()
|
212 |
+
|
213 |
+
# Generate results
|
214 |
+
stats = analyze_mutations(all_mutations)
|
215 |
+
|
216 |
+
# Display results
|
217 |
+
st.success("Analysis complete!")
|
218 |
+
|
219 |
+
# Summary statistics
|
220 |
+
st.header("Results Summary")
|
221 |
+
col1, col2, col3 = st.columns(3)
|
222 |
+
col1.metric("Total Mutations", stats['total_mutations'])
|
223 |
+
col2.metric("SNPs", stats['snps'])
|
224 |
+
col3.metric("INDELs", stats['indels'])
|
225 |
+
|
226 |
+
# Genome-wide visualization
|
227 |
+
st.plotly_chart(visualize_mutations(all_mutations, len(ref_genome)))
|
228 |
+
|
229 |
+
# Gene-specific results
|
230 |
+
st.header("Resistance-Associated Genes")
|
231 |
+
gene_mutations = pd.DataFrame([
|
232 |
+
{"Gene": gene, "Mutations": count, "Description": IMPORTANT_GENES[gene]['description']}
|
233 |
+
for gene, count in stats['by_gene'].items()
|
234 |
+
])
|
235 |
+
|
236 |
+
if not gene_mutations.empty:
|
237 |
+
st.dataframe(gene_mutations)
|
238 |
+
|
239 |
+
# Detailed mutation table
|
240 |
+
if stats['important_mutations']:
|
241 |
+
st.header("Detailed Mutation Analysis")
|
242 |
+
mutations_df = pd.DataFrame(stats['important_mutations'])
|
243 |
+
st.dataframe(mutations_df)
|
244 |
+
|
245 |
+
# Download option
|
246 |
+
csv = mutations_df.to_csv(index=False)
|
247 |
+
st.download_button(
|
248 |
+
"Download Results (CSV)",
|
249 |
+
csv,
|
250 |
+
"mtb_mutations.csv",
|
251 |
+
"text/csv",
|
252 |
+
key='download-csv'
|
253 |
+
)
|
254 |
+
|
255 |
+
except Exception as e:
|
256 |
+
st.error(f"Analysis error: {str(e)}")
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
main()
|