import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from Bio import pairwise2
from collections import defaultdict
import re
# Define important gene regions (positions based on H37Rv)
IMPORTANT_GENES = {
'rpoB': {'range': (759807, 763325), 'description': 'RNA polymerase β subunit (Rifampicin resistance)'},
'katG': {'range': (2153889, 2156111), 'description': 'Catalase-peroxidase (Isoniazid resistance)'},
'inhA': {'range': (1674202, 1675011), 'description': 'Enoyl-ACP reductase (Isoniazid resistance)'},
'gyrA': {'range': (7302, 9818), 'description': 'DNA gyrase subunit A (Fluoroquinolone resistance)'}
}
def read_fasta_from_upload(uploaded_file):
"""Read a FASTA file from Streamlit upload"""
content = uploaded_file.getvalue().decode('utf-8').strip()
parts = content.split('\n', 1)
sequence = ''.join(parts[1].split('\n')).replace(' ', '')
return sequence.upper()
def split_genome_into_chunks(sequence, chunk_size=10000, overlap=100):
"""Split genome into manageable chunks for alignment"""
chunks = []
positions = []
for i in range(0, len(sequence), chunk_size - overlap):
chunk = sequence[i:i + chunk_size]
chunks.append(chunk)
positions.append(i)
return chunks, positions
def find_mutations_in_chunk(ref_chunk, query_chunk, chunk_start):
"""Find mutations in a genome chunk"""
mutations = []
alignments = pairwise2.align.globalms(ref_chunk, query_chunk,
match=2,
mismatch=-3,
open=-10,
extend=-0.5)
if not alignments:
return mutations
alignment = alignments[0]
ref_aligned, query_aligned = alignment[0], alignment[1]
real_pos = 0
for i in range(len(ref_aligned)):
if ref_aligned[i] != '-':
real_pos += 1
if ref_aligned[i] != query_aligned[i]:
abs_pos = chunk_start + real_pos - 1
mut = {
'position': abs_pos,
'ref_base': ref_aligned[i],
'query_base': query_aligned[i] if query_aligned[i] != '-' else 'None',
'type': 'SNP' if ref_aligned[i] != '-' and query_aligned[i] != '-' else 'INDEL',
'context': {
'ref': ref_aligned[max(0,i-5):i] + '[' + ref_aligned[i] + ']' + ref_aligned[i+1:i+6],
'query': query_aligned[max(0,i-5):i] + '[' + query_aligned[i] + ']' + query_aligned[i+1:i+6]
}
}
# Check if mutation is in an important gene
for gene, info in IMPORTANT_GENES.items():
start, end = info['range']
if start <= abs_pos <= end:
mut['gene'] = gene
mut['gene_position'] = abs_pos - start + 1
mut['gene_description'] = info['description']
mutations.append(mut)
return mutations
def visualize_mutations(mutations, genome_length):
"""Create mutation visualization plots"""
# Prepare data for gene region visualization
gene_regions = []
for gene, info in IMPORTANT_GENES.items():
start, end = info['range']
gene_regions.append({
'gene': gene,
'start': start,
'end': end,
'y': 1
})
# Create genome-wide plot
fig = go.Figure()
# Add gene regions as rectangles
for region in gene_regions:
fig.add_trace(go.Scatter(
x=[region['start'], region['end']],
y=[region['y'], region['y']],
mode='lines',
name=region['gene'],
line=dict(width=10),
hoverinfo='text',
hovertext=f"{region['gene']}: {region['start']}-{region['end']}"
))
# Add mutations as scatter points
mutation_data = pd.DataFrame(mutations)
if not mutation_data.empty:
fig.add_trace(go.Scatter(
x=mutation_data['position'],
y=[1.1] * len(mutation_data),
mode='markers',
name='Mutations',
marker=dict(
color=['red' if t == 'SNP' else 'blue' for t in mutation_data['type']],
size=8
),
hoverinfo='text',
hovertext=mutation_data.apply(
lambda x: f"Position: {x['position']}
"
f"Type: {x['type']}
"
f"Change: {x['ref_base']}->{x['query_base']}",
axis=1
)
))
fig.update_layout(
title="Genome-wide Mutation Distribution",
xaxis_title="Genome Position",
yaxis_visible=False,
showlegend=True,
height=400
)
return fig
def analyze_mutations(mutations):
"""Generate comprehensive mutation statistics"""
stats = {
'total_mutations': len(mutations),
'snps': len([m for m in mutations if m['type'] == 'SNP']),
'indels': len([m for m in mutations if m['type'] == 'INDEL']),
'by_gene': defaultdict(int),
'important_mutations': []
}
for mut in mutations:
if 'gene' in mut:
stats['by_gene'][mut['gene']] += 1
stats['important_mutations'].append(mut)
return stats
def main():
st.title("M. tuberculosis Full Genome Comparison")
st.markdown("""
This tool performs whole-genome comparison of M. tuberculosis strains, identifying mutations
and analyzing resistance-associated genes.
**Instructions:**
1. Upload your reference genome (typically H37Rv)
2. Upload your query genome (clinical isolate)
3. Configure analysis parameters if needed
4. Run the analysis
""")
# File upload
col1, col2 = st.columns(2)
with col1:
reference_file = st.file_uploader("Reference Genome (FASTA)", type=['fasta', 'fa'])
with col2:
query_file = st.file_uploader("Query Genome (FASTA)", type=['fasta', 'fa'])
# Analysis parameters
with st.expander("Advanced Settings"):
chunk_size = st.slider("Analysis chunk size (bp)", 5000, 20000, 10000, 1000)
overlap = st.slider("Chunk overlap (bp)", 50, 200, 100, 10)
if reference_file and query_file:
if st.button("Run Analysis"):
with st.spinner("Analyzing genomes..."):
try:
# Read sequences
ref_genome = read_fasta_from_upload(reference_file)
query_genome = read_fasta_from_upload(query_file)
# Show progress
progress_bar = st.progress(0)
status = st.empty()
# Split genomes
status.text("Splitting genomes into chunks...")
ref_chunks, chunk_positions = split_genome_into_chunks(ref_genome, chunk_size, overlap)
query_chunks, _ = split_genome_into_chunks(query_genome, chunk_size, overlap)
# Process chunks
status.text("Analyzing mutations...")
all_mutations = []
total_chunks = len(ref_chunks)
for i, (ref_chunk, query_chunk, chunk_start) in enumerate(zip(ref_chunks, query_chunks, chunk_positions)):
progress_bar.progress((i + 1) / total_chunks)
mutations = find_mutations_in_chunk(ref_chunk, query_chunk, chunk_start)
all_mutations.extend(mutations)
# Analysis complete
progress_bar.empty()
status.empty()
# Generate results
stats = analyze_mutations(all_mutations)
# Display results
st.success("Analysis complete!")
# Summary statistics
st.header("Results Summary")
col1, col2, col3 = st.columns(3)
col1.metric("Total Mutations", stats['total_mutations'])
col2.metric("SNPs", stats['snps'])
col3.metric("INDELs", stats['indels'])
# Genome-wide visualization
st.plotly_chart(visualize_mutations(all_mutations, len(ref_genome)))
# Gene-specific results
st.header("Resistance-Associated Genes")
gene_mutations = pd.DataFrame([
{"Gene": gene, "Mutations": count, "Description": IMPORTANT_GENES[gene]['description']}
for gene, count in stats['by_gene'].items()
])
if not gene_mutations.empty:
st.dataframe(gene_mutations)
# Detailed mutation table
if stats['important_mutations']:
st.header("Detailed Mutation Analysis")
mutations_df = pd.DataFrame(stats['important_mutations'])
st.dataframe(mutations_df)
# Download option
csv = mutations_df.to_csv(index=False)
st.download_button(
"Download Results (CSV)",
csv,
"mtb_mutations.csv",
"text/csv",
key='download-csv'
)
except Exception as e:
st.error(f"Analysis error: {str(e)}")
if __name__ == "__main__":
main()