File size: 12,740 Bytes
8dfc891 7973235 5c02e21 b86605e 8dfc891 b86605e c4ab81d b86605e c4ab81d 74a5f75 5c02e21 b86605e 5c02e21 a07334a 5c02e21 7c43484 5c02e21 a07334a 5c02e21 a07334a 5c02e21 7c43484 5944a16 5c02e21 a07334a 5c02e21 a07334a 5c02e21 b86605e 7c43484 5c02e21 7c43484 5c02e21 a07334a 5c02e21 b86605e 5c02e21 a07334a 5c02e21 a07334a 5c02e21 5944a16 5c02e21 7c43484 5c02e21 7c43484 5c02e21 a07334a 7c43484 5c02e21 a07334a 7c43484 5c02e21 5944a16 5c02e21 a07334a 5c02e21 7973235 b86605e 5944a16 a07334a 7c43484 a07334a 7c43484 a07334a 7c43484 a07334a 7c43484 a07334a 7973235 a07334a 7c43484 a07334a 7c43484 a07334a 7c43484 a07334a 7c43484 a07334a 7c43484 a07334a 7973235 b86605e 5944a16 b86605e 5944a16 b86605e 5944a16 b86605e 5944a16 2ebb842 7973235 5c02e21 a07334a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
import urllib.request
import gradio as gr
import numpy as np
from part1_data import TobaccoAnalyzer
from part2_visualization import VisualizationHandler
from part3 import SAMAnalyzer
import time
# Add a simple progress indicator
def download_with_progress(url, filename):
print(f"Downloading {filename}...")
start_time = time.time()
urllib.request.urlretrieve(url, filename)
end_time = time.time()
print(f"Download completed in {end_time - start_time:.2f} seconds")
# Download SAM model if it doesn't exist
if not os.path.exists('sam_vit_h_4b8939.pth'):
try:
download_with_progress(
'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth',
'sam_vit_h_4b8939.pth'
)
except Exception as e:
print(f"Error downloading SAM model: {e}")
print("Please ensure you have internet connection and sufficient disk space.")
def analyze_location(location_name):
"""Analyze location using weather and satellite data"""
try:
analyzer = TobaccoAnalyzer()
visualizer = VisualizationHandler(analyzer.optimal_conditions)
# Get coordinates from location name
location_data = analyzer.geocode_location(location_name)
if not location_data:
return None, None, "Location not found. Please try a different location name.", None
lat, lon = location_data['lat'], location_data['lon']
# Get weather data
df = analyzer.get_weather_data(lat, lon, historical_days=90, forecast_days=90)
if df is None or df.empty:
return None, None, "Unable to fetch weather data. Please try again.", None
# Separate historical and forecast data
historical = df[df['type'] == 'historical']
forecast = df[df['type'] != 'historical']
if historical.empty:
return None, None, "No historical data available.", None
# Calculate base scores
temp_score = np.clip((historical['temperature'].mean() - 15) / (30 - 15), 0, 1)
humidity_score = np.clip((historical['humidity'].mean() - 50) / (80 - 50), 0, 1)
rainfall_score = np.clip(historical['rainfall'].mean() / 5, 0, 1)
ndvi_score = np.clip((historical['estimated_ndvi'].mean() + 1) / 2, 0, 1)
# Get trends analysis
trends = analyzer.analyze_trends(df)
if trends is None:
return None, None, "Error calculating trends.", None
# Calculate overall score
weights = {
'temperature': 0.3,
'humidity': 0.2,
'rainfall': 0.2,
'ndvi': 0.3
}
overall_score = (
temp_score * weights['temperature'] +
humidity_score * weights['humidity'] +
rainfall_score * weights['rainfall'] +
ndvi_score * weights['ndvi']
)
# Create visualizations
time_series_plot = visualizer.create_interactive_plots(df)
gauge_plot = visualizer.create_gauge_chart(overall_score)
location_map = visualizer.create_enhanced_map(lat, lon, overall_score, historical['estimated_ndvi'].mean())
# Generate analysis text
analysis_text = f"""
📍 Location Analysis:
Location: {location_data['address']}
Coordinates: {lat:.4f}°N, {lon:.4f}°E
Region: {location_data['region'] if location_data['region'] else 'Unknown'}
🌡️ Historical Weather Analysis (Past 90 Days):
Temperature: {historical['temperature'].mean():.1f}°C (±{historical['temperature'].std():.1f}°C)
Daily Range: {historical['temp_range'].mean():.1f}°C
Humidity: {historical['humidity'].mean():.1f}% (±{historical['humidity'].std():.1f}%)
Rainfall: {historical['rainfall'].mean():.1f}mm/day (±{historical['rainfall'].std():.1f}mm)
🌿 Vegetation Analysis:
Current NDVI: {historical['estimated_ndvi'].mean():.2f}
Minimum NDVI: {historical['estimated_ndvi'].min():.2f}
Maximum NDVI: {historical['estimated_ndvi'].max():.2f}
Vegetation Status: {get_vegetation_status(historical['estimated_ndvi'].mean())}
🔮 Forecast Analysis (Next 90 Days):
Temperature: {forecast['temperature'].mean():.1f}°C (±{forecast['temperature'].std():.1f}°C)
Humidity: {forecast['humidity'].mean():.1f}% (±{forecast['humidity'].std():.1f}%)
Rainfall: {forecast['rainfall'].mean():.1f}mm/day (±{forecast['rainfall'].std():.1f}mm)
Expected NDVI: {forecast['estimated_ndvi'].mean():.2f}
📊 Growing Condition Scores:
Temperature Score: {temp_score:.2f}
Humidity Score: {humidity_score:.2f}
Rainfall Score: {rainfall_score:.2f}
Vegetation Score: {ndvi_score:.2f}
Overall Score: {overall_score:.2f}
🎯 Recommendations:
{get_recommendations(overall_score, ndvi_score)}
⚠️ Risk Factors:
{get_risk_factors(df, trends)}
📝 Additional Notes:
• Growing Season: {is_growing_season(historical['season'].iloc[-1])}
• Weather Stability: {get_weather_stability(historical)}
• Long-term Outlook: {get_long_term_outlook(trends)}
"""
return location_map, analysis_text, time_series_plot, gauge_plot
except Exception as e:
error_message = f"An error occurred: {str(e)}"
print(f"Error details: {e}")
return None, None, error_message, None
def analyze_satellite_image(image):
"""Analyze satellite image using SAM2"""
try:
analyzer = SAMAnalyzer()
veg_index, health_analysis, viz_plot = analyzer.process_image(image)
if veg_index is None:
return None, "Error processing image. Please try again."
analysis_text = analyzer.format_analysis_text(health_analysis)
return viz_plot, analysis_text
except Exception as e:
return None, f"Error analyzing image: {str(e)}"
def get_vegetation_status(ndvi):
"""Get detailed vegetation status based on NDVI value"""
if ndvi < 0:
return "Very Low - Bare soil or water bodies"
elif ndvi < 0.1:
return "Low - Very sparse vegetation"
elif ndvi < 0.2:
return "Sparse - Stressed vegetation"
elif ndvi < 0.3:
return "Moderate - Typical agricultural land"
elif ndvi < 0.4:
return "Good - Healthy vegetation"
elif ndvi < 0.5:
return "High - Very healthy vegetation"
elif ndvi < 0.6:
return "Very High - Dense vegetation"
else:
return "Dense - Very dense, healthy vegetation"
def get_recommendations(score, ndvi):
"""Get detailed recommendations based on scores"""
if score >= 0.8 and ndvi >= 0.6:
return """
✅ Excellent conditions for tobacco growing
• Proceed with standard planting schedule
• Regular monitoring recommended
• Consider expansion opportunities
"""
elif score >= 0.6:
return """
👍 Good conditions with some considerations
• Implement basic risk mitigation measures
• Regular monitoring essential
• Consider crop insurance
"""
elif score >= 0.4:
return """
⚠️ Marginal conditions - proceed with caution
• Enhanced monitoring required
• Strong risk mitigation needed
• Crop insurance strongly recommended
• Consider alternative timing
"""
else:
return """
❌ Poor conditions - high risk
• Not recommended for planting
• Consider alternative locations
• Extensive risk mitigation needed
• Alternative crops suggested
"""
def get_risk_factors(df, trends):
"""Analyze and return risk factors"""
risks = []
if df['temp_range'].mean() > 15:
risks.append("• High daily temperature variations")
if trends['historical']['temperature']['trend'] < 0:
risks.append("• Declining temperature trend")
if df['rainfall'].std() > df['rainfall'].mean():
risks.append("• Inconsistent rainfall patterns")
if trends['historical']['rainfall']['trend'] < 0:
risks.append("• Decreasing rainfall trend")
if trends['historical']['ndvi']['trend'] < 0:
risks.append("• Declining vegetation health")
return "\n".join(risks) if risks else "No major risk factors identified"
def is_growing_season(season):
"""Check if current season is suitable for growing"""
season_suitability = {
'Main': "Prime growing season - Optimal conditions",
'Early': "Early growing season - Good potential",
'Late': "Late growing season - Monitor closely",
'Dry': "Dry season - Higher risk period"
}
return season_suitability.get(season, "Season not identified")
def get_weather_stability(df):
"""Assess weather stability"""
temp_std = df['temperature'].std()
if temp_std < 2:
return "Very stable weather patterns"
elif temp_std < 4:
return "Moderately stable weather"
return "Unstable weather patterns - higher risk"
def get_long_term_outlook(trends):
"""Assess long-term outlook based on trends"""
temp_trend = trends['historical']['temperature']['trend']
rain_trend = trends['historical']['rainfall']['trend']
if temp_trend > 0 and rain_trend > 0:
return "Improving conditions"
elif temp_trend < 0 and rain_trend < 0:
return "Deteriorating conditions"
return "Mixed conditions - monitor closely"
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown(
"""
# 🌱 Agricultural Credit Risk Assessment System
## Weather, Vegetation, and Credit Scoring Analysis for Tobacco Farming
"""
)
with gr.Tab("📊 Location Analysis"):
# Input Section
with gr.Row():
location_input = gr.Textbox(
label="Enter Location",
placeholder="e.g., Tabora, Tanzania",
scale=4
)
analyze_button = gr.Button("Analyze", variant="primary", scale=1)
# Map and Analysis Section
with gr.Row():
with gr.Column(scale=2):
location_map = gr.HTML(label="NDVI Analysis Map")
with gr.Column(scale=1):
analysis_text = gr.Textbox(
label="Analysis Results",
lines=25,
show_label=False
)
# Plots Section
with gr.Row():
weather_plot = gr.Plot(label="Weather Analysis")
with gr.Row():
score_gauge = gr.Plot(label="Growing Conditions Score")
# Location Examples
gr.Examples(
examples=[
["Tabora, Tanzania"],
["Urambo, Tabora, Tanzania"],
["Sikonge, Tabora, Tanzania"],
["Nzega, Tabora, Tanzania"]
],
inputs=location_input,
outputs=[location_map, analysis_text, weather_plot, score_gauge],
fn=analyze_location,
cache_examples=True
)
# Handle location analysis
analyze_button.click(
fn=analyze_location,
inputs=[location_input],
outputs=[location_map, analysis_text, weather_plot, score_gauge]
)
with gr.Tab("🛰️ Satellite Image Analysis"):
gr.Markdown("""
## Satellite Image Analysis with SAM2
Upload a satellite or aerial image to analyze vegetation health using advanced segmentation.
""")
with gr.Row():
image_input = gr.Image(
label="Upload Satellite/Aerial Image"
)
with gr.Row():
analyze_image_button = gr.Button("🔍 Analyze Image", variant="primary")
with gr.Row():
with gr.Column():
image_plot = gr.Plot(label="Vegetation Analysis Results")
with gr.Column():
image_analysis = gr.Textbox(
label="Analysis Results",
lines=10,
show_label=False
)
# Launch the app
if __name__ == "__main__":
demo.launch() |