Update part2_visualization.py
Browse files- part2_visualization.py +125 -41
part2_visualization.py
CHANGED
@@ -4,10 +4,23 @@ import plotly.graph_objects as go
|
|
4 |
from plotly.subplots import make_subplots
|
5 |
import folium
|
6 |
import numpy as np
|
|
|
|
|
|
|
7 |
|
8 |
class VisualizationHandler:
|
9 |
def __init__(self, optimal_conditions):
|
10 |
self.optimal_conditions = optimal_conditions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def create_interactive_plots(self, df):
|
13 |
"""Create enhanced interactive Plotly visualizations"""
|
@@ -150,57 +163,97 @@ class VisualizationHandler:
|
|
150 |
|
151 |
return fig
|
152 |
|
153 |
-
def
|
154 |
-
"""Create an interactive map with
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
folium.Circle(
|
187 |
-
radius=
|
188 |
location=[lat, lon],
|
|
|
189 |
color=color,
|
190 |
-
fill=
|
191 |
-
|
192 |
).add_to(m)
|
193 |
-
|
194 |
-
return m._repr_html_()
|
195 |
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
"""Create an enhanced gauge chart for the overall score"""
|
198 |
fig = go.Figure(go.Indicator(
|
199 |
mode="gauge+number+delta",
|
200 |
value=score,
|
201 |
domain={'x': [0, 1], 'y': [0, 1]},
|
202 |
title={
|
203 |
-
'text':
|
204 |
'font': {'size': 24}
|
205 |
},
|
206 |
delta={
|
@@ -235,4 +288,35 @@ class VisualizationHandler:
|
|
235 |
font={'color': "darkblue", 'family': "Arial"}
|
236 |
)
|
237 |
|
238 |
-
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from plotly.subplots import make_subplots
|
5 |
import folium
|
6 |
import numpy as np
|
7 |
+
import ee
|
8 |
+
import geemap
|
9 |
+
from branca.colormap import LinearColormap
|
10 |
|
11 |
class VisualizationHandler:
|
12 |
def __init__(self, optimal_conditions):
|
13 |
self.optimal_conditions = optimal_conditions
|
14 |
+
self.ndvi_colors = [
|
15 |
+
'#d73027', # Very low vegetation
|
16 |
+
'#f46d43', # Low vegetation
|
17 |
+
'#fdae61', # Sparse vegetation
|
18 |
+
'#fee08b', # Moderate vegetation
|
19 |
+
'#d9ef8b', # Good vegetation
|
20 |
+
'#a6d96a', # High vegetation
|
21 |
+
'#66bd63', # Very high vegetation
|
22 |
+
'#1a9850' # Dense vegetation
|
23 |
+
]
|
24 |
|
25 |
def create_interactive_plots(self, df):
|
26 |
"""Create enhanced interactive Plotly visualizations"""
|
|
|
163 |
|
164 |
return fig
|
165 |
|
166 |
+
def create_enhanced_map(self, lat, lon, weather_score, ndvi_data=None):
|
167 |
+
"""Create an interactive map with both weather and NDVI data"""
|
168 |
+
try:
|
169 |
+
# Create base map
|
170 |
+
m = folium.Map(location=[lat, lon], zoom_start=15)
|
171 |
+
|
172 |
+
# If NDVI data is available, add it to the map
|
173 |
+
if ndvi_data and 'image' in ndvi_data:
|
174 |
+
try:
|
175 |
+
# Get NDVI visualization parameters
|
176 |
+
vis_params = {
|
177 |
+
'min': -0.2,
|
178 |
+
'max': 0.8,
|
179 |
+
'palette': self.ndvi_colors
|
180 |
+
}
|
181 |
+
|
182 |
+
# Add NDVI layer
|
183 |
+
map_id_dict = ndvi_data['image'].getMapId(vis_params)
|
184 |
+
folium.TileLayer(
|
185 |
+
tiles=map_id_dict['tile_fetcher'].url_format,
|
186 |
+
attr='NDVI Data',
|
187 |
+
overlay=True,
|
188 |
+
name='NDVI Layer'
|
189 |
+
).add_to(m)
|
190 |
+
|
191 |
+
# Add NDVI legend
|
192 |
+
colormap = LinearColormap(
|
193 |
+
colors=self.ndvi_colors,
|
194 |
+
vmin=-0.2,
|
195 |
+
vmax=0.8,
|
196 |
+
caption='NDVI Values'
|
197 |
+
)
|
198 |
+
colormap.add_to(m)
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
print(f"Error adding NDVI layer: {e}")
|
202 |
+
|
203 |
+
# Calculate combined score if NDVI data is available
|
204 |
+
if ndvi_data and 'stats' in ndvi_data:
|
205 |
+
ndvi_score = (ndvi_data['stats'].get('NDVI_mean', 0) + 1) / 2
|
206 |
+
combined_score = (weather_score * 0.6 + ndvi_score * 0.4)
|
207 |
+
else:
|
208 |
+
combined_score = weather_score
|
209 |
+
|
210 |
+
# Color based on combined score
|
211 |
+
if combined_score >= 0.8:
|
212 |
+
color = 'green'
|
213 |
+
elif combined_score >= 0.6:
|
214 |
+
color = 'yellow'
|
215 |
+
elif combined_score >= 0.4:
|
216 |
+
color = 'orange'
|
217 |
+
else:
|
218 |
+
color = 'red'
|
219 |
+
|
220 |
+
# Add analysis circles
|
221 |
folium.Circle(
|
222 |
+
radius=2000,
|
223 |
location=[lat, lon],
|
224 |
+
popup=f'Combined Score: {combined_score:.2f}<br>Weather Score: {weather_score:.2f}',
|
225 |
color=color,
|
226 |
+
fill=True,
|
227 |
+
fillOpacity=0.4
|
228 |
).add_to(m)
|
|
|
|
|
229 |
|
230 |
+
# Add smaller analysis zones
|
231 |
+
for radius in [1000, 1500]:
|
232 |
+
folium.Circle(
|
233 |
+
radius=radius,
|
234 |
+
location=[lat, lon],
|
235 |
+
color=color,
|
236 |
+
fill=False,
|
237 |
+
weight=1
|
238 |
+
).add_to(m)
|
239 |
+
|
240 |
+
# Add layer control
|
241 |
+
folium.LayerControl().add_to(m)
|
242 |
+
|
243 |
+
return m._repr_html_()
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
print(f"Error creating enhanced map: {e}")
|
247 |
+
return None
|
248 |
+
|
249 |
+
def create_gauge_chart(self, score, title="Growing Conditions Score"):
|
250 |
"""Create an enhanced gauge chart for the overall score"""
|
251 |
fig = go.Figure(go.Indicator(
|
252 |
mode="gauge+number+delta",
|
253 |
value=score,
|
254 |
domain={'x': [0, 1], 'y': [0, 1]},
|
255 |
title={
|
256 |
+
'text': title,
|
257 |
'font': {'size': 24}
|
258 |
},
|
259 |
delta={
|
|
|
288 |
font={'color': "darkblue", 'family': "Arial"}
|
289 |
)
|
290 |
|
291 |
+
return fig
|
292 |
+
|
293 |
+
def create_ndvi_report(self, ndvi_data):
|
294 |
+
"""Create a detailed NDVI analysis report"""
|
295 |
+
if not ndvi_data or 'stats' not in ndvi_data:
|
296 |
+
return None
|
297 |
+
|
298 |
+
stats = ndvi_data['stats']
|
299 |
+
mean_ndvi = stats.get('NDVI_mean', 0)
|
300 |
+
|
301 |
+
# Create analysis text
|
302 |
+
if mean_ndvi < 0:
|
303 |
+
vegetation_status = "Very low vegetation - likely bare soil or water"
|
304 |
+
elif mean_ndvi < 0.2:
|
305 |
+
vegetation_status = "Low vegetation - sparse cover or stressed vegetation"
|
306 |
+
elif mean_ndvi < 0.4:
|
307 |
+
vegetation_status = "Moderate vegetation - typical for agricultural areas"
|
308 |
+
elif mean_ndvi < 0.6:
|
309 |
+
vegetation_status = "High vegetation - healthy crops or natural vegetation"
|
310 |
+
else:
|
311 |
+
vegetation_status = "Very high vegetation - dense, healthy vegetation"
|
312 |
+
|
313 |
+
report = {
|
314 |
+
'mean_ndvi': mean_ndvi,
|
315 |
+
'std_dev': stats.get('NDVI_stdDev', 0),
|
316 |
+
'min_ndvi': stats.get('NDVI_min', 0),
|
317 |
+
'max_ndvi': stats.get('NDVI_max', 0),
|
318 |
+
'vegetation_status': vegetation_status,
|
319 |
+
'optimal_range': self.optimal_conditions['ndvi']
|
320 |
+
}
|
321 |
+
|
322 |
+
return report
|