Create part3.py
Browse files
part3.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from segment_anything import sam_model_registry, SamPredictor
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import io
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
class SAMAnalyzer:
|
9 |
+
def __init__(self, model_path="sam_vit_h_4b8939.pth"):
|
10 |
+
self.model_path = model_path
|
11 |
+
self.sam = None
|
12 |
+
self.predictor = None
|
13 |
+
self.initialize_sam()
|
14 |
+
|
15 |
+
def initialize_sam(self):
|
16 |
+
"""Initialize SAM model"""
|
17 |
+
try:
|
18 |
+
self.sam = sam_model_registry["vit_h"](checkpoint=self.model_path)
|
19 |
+
self.predictor = SamPredictor(self.sam)
|
20 |
+
print("SAM model initialized successfully")
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Error initializing SAM model: {e}")
|
23 |
+
raise
|
24 |
+
|
25 |
+
def process_image(self, image_data):
|
26 |
+
"""Process uploaded image using SAM"""
|
27 |
+
try:
|
28 |
+
# Convert uploaded image to numpy array
|
29 |
+
if isinstance(image_data, (str, bytes)):
|
30 |
+
if isinstance(image_data, str):
|
31 |
+
image = cv2.imread(image_data)
|
32 |
+
else:
|
33 |
+
nparr = np.frombuffer(image_data, np.uint8)
|
34 |
+
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
35 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
36 |
+
else:
|
37 |
+
image = np.array(Image.open(image_data))
|
38 |
+
|
39 |
+
# Segment farmland
|
40 |
+
print("Segmenting farmland...")
|
41 |
+
farmland_mask = self.segment_farmland(image)
|
42 |
+
|
43 |
+
# Calculate vegetation index
|
44 |
+
print("Calculating vegetation index...")
|
45 |
+
veg_index = self.calculate_vegetation_index(image, farmland_mask)
|
46 |
+
|
47 |
+
# Analyze health
|
48 |
+
print("Analyzing crop health...")
|
49 |
+
health_analysis = self.analyze_crop_health(veg_index, farmland_mask)
|
50 |
+
|
51 |
+
# Create visualization
|
52 |
+
print("Generating visualization...")
|
53 |
+
viz_plot = self.create_visualization(image, farmland_mask, veg_index)
|
54 |
+
|
55 |
+
return veg_index, health_analysis, viz_plot
|
56 |
+
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error processing image: {e}")
|
59 |
+
return None, None, None
|
60 |
+
|
61 |
+
def segment_farmland(self, image):
|
62 |
+
"""Segment farmland using SAM2"""
|
63 |
+
self.predictor.set_image(image)
|
64 |
+
|
65 |
+
# Generate automatic mask proposals
|
66 |
+
h, w = image.shape[:2]
|
67 |
+
input_point = np.array([[w//2, h//2]])
|
68 |
+
input_label = np.array([1])
|
69 |
+
|
70 |
+
masks, scores, logits = self.predictor.predict(
|
71 |
+
point_coords=input_point,
|
72 |
+
point_labels=input_label,
|
73 |
+
multimask_output=True
|
74 |
+
)
|
75 |
+
|
76 |
+
# Select best mask
|
77 |
+
best_mask = masks[scores.argmax()]
|
78 |
+
return best_mask
|
79 |
+
|
80 |
+
def calculate_vegetation_index(self, image, mask):
|
81 |
+
"""Calculate vegetation index using RGB"""
|
82 |
+
r, g, b = image[:,:,0], image[:,:,1], image[:,:,2]
|
83 |
+
|
84 |
+
numerator = (2 * g.astype(float) - r.astype(float) - b.astype(float))
|
85 |
+
denominator = (2 * g.astype(float) + r.astype(float) + b.astype(float))
|
86 |
+
denominator[denominator == 0] = 1e-10
|
87 |
+
|
88 |
+
veg_index = numerator / denominator
|
89 |
+
veg_index = (veg_index + 1) / 2
|
90 |
+
veg_index = veg_index * mask
|
91 |
+
|
92 |
+
return veg_index
|
93 |
+
|
94 |
+
def analyze_crop_health(self, veg_index, mask):
|
95 |
+
"""Analyze crop health based on vegetation index"""
|
96 |
+
valid_pixels = veg_index[mask > 0]
|
97 |
+
if len(valid_pixels) == 0:
|
98 |
+
return {
|
99 |
+
'average_index': 0,
|
100 |
+
'health_distribution': {
|
101 |
+
'low_vegetation': 0,
|
102 |
+
'moderate_vegetation': 0,
|
103 |
+
'high_vegetation': 0
|
104 |
+
},
|
105 |
+
'overall_health': 'No vegetation detected'
|
106 |
+
}
|
107 |
+
|
108 |
+
avg_index = np.mean(valid_pixels)
|
109 |
+
health_categories = {
|
110 |
+
'low_vegetation': np.sum((valid_pixels <= 0.3)) / len(valid_pixels),
|
111 |
+
'moderate_vegetation': np.sum((valid_pixels > 0.3) & (valid_pixels <= 0.6)) / len(valid_pixels),
|
112 |
+
'high_vegetation': np.sum((valid_pixels > 0.6)) / len(valid_pixels)
|
113 |
+
}
|
114 |
+
|
115 |
+
return {
|
116 |
+
'average_index': avg_index,
|
117 |
+
'health_distribution': health_categories,
|
118 |
+
'overall_health': 'Healthy' if avg_index > 0.5 else 'Needs attention'
|
119 |
+
}
|
120 |
+
|
121 |
+
def create_visualization(self, image, mask, veg_index):
|
122 |
+
"""Create visualization of results"""
|
123 |
+
fig = plt.figure(figsize=(15, 5))
|
124 |
+
|
125 |
+
# Original image with mask overlay
|
126 |
+
plt.subplot(131)
|
127 |
+
plt.imshow(image)
|
128 |
+
plt.imshow(mask, alpha=0.3, cmap='gray')
|
129 |
+
plt.title('Segmented Farmland')
|
130 |
+
plt.axis('off')
|
131 |
+
|
132 |
+
# Vegetation index heatmap
|
133 |
+
plt.subplot(132)
|
134 |
+
plt.imshow(veg_index, cmap='RdYlGn')
|
135 |
+
plt.colorbar(label='Vegetation Index')
|
136 |
+
plt.title('Vegetation Index')
|
137 |
+
plt.axis('off')
|
138 |
+
|
139 |
+
# Health classification
|
140 |
+
plt.subplot(133)
|
141 |
+
health_mask = np.zeros_like(veg_index)
|
142 |
+
health_mask[veg_index <= 0.3] = 1
|
143 |
+
health_mask[(veg_index > 0.3) & (veg_index <= 0.6)] = 2
|
144 |
+
health_mask[veg_index > 0.6] = 3
|
145 |
+
health_mask = health_mask * mask
|
146 |
+
plt.imshow(health_mask, cmap='viridis')
|
147 |
+
plt.colorbar(ticks=[1, 2, 3],
|
148 |
+
label='Vegetation Levels',
|
149 |
+
boundaries=np.arange(0.5, 4.5),
|
150 |
+
values=[1, 2, 3])
|
151 |
+
plt.title('Vegetation Levels')
|
152 |
+
plt.axis('off')
|
153 |
+
|
154 |
+
plt.tight_layout()
|
155 |
+
|
156 |
+
# Save plot to buffer
|
157 |
+
buf = io.BytesIO()
|
158 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
159 |
+
buf.seek(0)
|
160 |
+
plt.close()
|
161 |
+
|
162 |
+
return buf
|
163 |
+
|
164 |
+
def format_analysis_text(self, health_analysis):
|
165 |
+
"""Format health analysis results as text"""
|
166 |
+
return f"""
|
167 |
+
🌿 Vegetation Analysis Results:
|
168 |
+
|
169 |
+
📊 Average Vegetation Index: {health_analysis['average_index']:.2f}
|
170 |
+
|
171 |
+
🌱 Vegetation Distribution:
|
172 |
+
• Low Vegetation: {health_analysis['health_distribution']['low_vegetation']*100:.1f}%
|
173 |
+
• Moderate Vegetation: {health_analysis['health_distribution']['moderate_vegetation']*100:.1f}%
|
174 |
+
• High Vegetation: {health_analysis['health_distribution']['high_vegetation']*100:.1f}%
|
175 |
+
|
176 |
+
📋 Overall Health Status: {health_analysis['overall_health']}
|
177 |
+
|
178 |
+
Note: Analysis uses SAM2 for farmland segmentation
|
179 |
+
"""
|