Spaces:
Runtime error
Runtime error
yizhilll
commited on
Commit
·
5247bff
1
Parent(s):
1eaf59a
add demo loadin code
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- app.py +73 -4
__pycache__/app.cpython-310.pyc
ADDED
Binary file (1.76 kB). View file
|
|
app.py
CHANGED
@@ -1,7 +1,76 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2FeatureExtractor
|
3 |
+
from transformers import AutoModel
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torchaudio
|
7 |
+
import torchaudio.transforms as T
|
8 |
|
9 |
+
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py
|
|
|
10 |
|
11 |
+
inputs = [gr.components.Audio(type="filepath", label="Add music audio file"),
|
12 |
+
gr.inputs.Audio(source="microphone",optional=True, type="filepath"),
|
13 |
+
]
|
14 |
+
outputs = [gr.components.Textbox()]
|
15 |
+
# outputs = [gr.components.Textbox(), transcription_df]
|
16 |
+
title = "Output the tags of a (music) audio"
|
17 |
+
description = "An example of using MERT-95M-public to conduct music tagging."
|
18 |
+
article = ""
|
19 |
+
audio_examples = [
|
20 |
+
["input/example-1.wav"],
|
21 |
+
["input/example-2.wav"],
|
22 |
+
]
|
23 |
+
|
24 |
+
# Load the model
|
25 |
+
model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
|
26 |
+
# loading the corresponding preprocessor config
|
27 |
+
processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
|
28 |
+
|
29 |
+
|
30 |
+
def convert_audio(inputs, microphone):
|
31 |
+
if (microphone is not None):
|
32 |
+
inputs = microphone
|
33 |
+
|
34 |
+
waveform, sample_rate = torchaudio.load(inputs)
|
35 |
+
|
36 |
+
|
37 |
+
resample_rate = processor.sampling_rate
|
38 |
+
|
39 |
+
# make sure the sample_rate aligned
|
40 |
+
if resample_rate != sample_rate:
|
41 |
+
print(f'setting rate from {sample_rate} to {resample_rate}')
|
42 |
+
resampler = T.Resample(sample_rate, resample_rate)
|
43 |
+
waveform = resampler(waveform)
|
44 |
+
|
45 |
+
inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
|
46 |
+
with torch.no_grad():
|
47 |
+
outputs = model(**inputs, output_hidden_states=True)
|
48 |
+
|
49 |
+
# take a look at the output shape, there are 13 layers of representation
|
50 |
+
# each layer performs differently in different downstream tasks, you should choose empirically
|
51 |
+
all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze()
|
52 |
+
# print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
|
53 |
+
return str(all_layer_hidden_states.shape)
|
54 |
+
|
55 |
+
|
56 |
+
# iface = gr.Interface(fn=convert_audio, inputs="audio", outputs="text")
|
57 |
+
# iface.launch()
|
58 |
+
|
59 |
+
audio_chunked = gr.Interface(
|
60 |
+
fn=convert_audio,
|
61 |
+
inputs=inputs,
|
62 |
+
outputs=outputs,
|
63 |
+
allow_flagging="never",
|
64 |
+
title=title,
|
65 |
+
description=description,
|
66 |
+
article=article,
|
67 |
+
examples=audio_examples,
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
demo = gr.Blocks()
|
72 |
+
with demo:
|
73 |
+
gr.TabbedInterface([audio_chunked], [
|
74 |
+
"Audio File"])
|
75 |
+
# demo.queue(concurrency_count=1, max_size=5)
|
76 |
+
demo.launch(show_api=False)
|