import gradio as gr from transformers import Wav2Vec2FeatureExtractor from transformers import AutoModel import torch from torch import nn import torchaudio import torchaudio.transforms as T import logging # input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py logger = logging.getLogger("whisper-jax-app") logger.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter( "%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") ch.setFormatter(formatter) logger.addHandler(ch) inputs = [gr.components.Audio(type="filepath", label="Add music audio file"), gr.inputs.Audio(source="microphone",optional=True, type="filepath"), ] outputs = [gr.components.Textbox()] # outputs = [gr.components.Textbox(), transcription_df] title = "Output the tags of a (music) audio" description = "An example of using MERT-95M-public to conduct music tagging." article = "" audio_examples = [ # ["input/example-1.wav"], # ["input/example-2.wav"], ] # Load the model model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True) # loading the corresponding preprocessor config processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True) device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device) def convert_audio(inputs, microphone): if (microphone is not None): inputs = microphone waveform, sample_rate = torchaudio.load(inputs) resample_rate = processor.sampling_rate # make sure the sample_rate aligned if resample_rate != sample_rate: print(f'setting rate from {sample_rate} to {resample_rate}') resampler = T.Resample(sample_rate, resample_rate) waveform = resampler(waveform) waveform = waveform.view(-1,) # make it (n_sample, ) model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt") model_inputs.to(device) with torch.no_grad(): model_outputs = model(**model_inputs, output_hidden_states=True) # take a look at the output shape, there are 13 layers of representation # each layer performs differently in different downstream tasks, you should choose empirically all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze() # print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim] # logger.warning(all_layer_hidden_states.shape) return device + " :" + str(all_layer_hidden_states.shape) # iface = gr.Interface(fn=convert_audio, inputs="audio", outputs="text") # iface.launch() audio_chunked = gr.Interface( fn=convert_audio, inputs=inputs, outputs=outputs, allow_flagging="never", title=title, description=description, article=article, examples=audio_examples, ) demo = gr.Blocks() with demo: gr.TabbedInterface([audio_chunked], [ "Audio File"]) # demo.queue(concurrency_count=1, max_size=5) demo.launch(show_api=False)