Spaces:
Running
Running
import gradio as gr | |
# | |
from transformers import Wav2Vec2FeatureExtractor | |
from transformers import AutoModel | |
import torch | |
from torch import nn | |
import torchaudio | |
import torchaudio.transforms as T | |
import logging | |
import json | |
import os | |
import re | |
import pandas as pd | |
import importlib | |
modeling_MERT = importlib.import_module("MERT-v1-95M.modeling_MERT") | |
from Prediction_Head.MTGGenre_head import MLPProberBase | |
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py | |
logger = logging.getLogger("MERT-v1-95M-app") | |
logger.setLevel(logging.INFO) | |
ch = logging.StreamHandler() | |
ch.setLevel(logging.INFO) | |
formatter = logging.Formatter( | |
"%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") | |
ch.setFormatter(formatter) | |
logger.addHandler(ch) | |
inputs = [ | |
gr.components.Audio(type="filepath", label="Add music audio file"), | |
gr.inputs.Audio(source="microphone", type="filepath"), | |
] | |
live_inputs = [ | |
gr.Audio(source="microphone",streaming=True, type="filepath"), | |
] | |
title = "One Model for All Music Understanding Tasks" | |
description = "An example of using the [MERT-v1-95M](https://huggingface.co/m-a-p/MERT-v1-95M) model as backbone to conduct multiple music understanding tasks with the universal represenation." | |
article = "The tasks include EMO, GS, MTGInstrument, MTGGenre, MTGTop50, MTGMood, NSynthI, NSynthP, VocalSetS, VocalSetT. \n\n More models can be referred at the [map organization page](https://huggingface.co/m-a-p)." | |
audio_examples = [ | |
# ["input/example-1.wav"], | |
# ["input/example-2.wav"], | |
] | |
df_init = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3']) | |
transcription_df = gr.DataFrame(value=df_init, label="Output Dataframe", row_count=( | |
0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate') | |
# outputs = [gr.components.Textbox()] | |
outputs = transcription_df | |
df_init_live = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3']) | |
transcription_df_live = gr.DataFrame(value=df_init_live, label="Output Dataframe", row_count=( | |
0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate') | |
outputs_live = transcription_df_live | |
# Load the model and the corresponding preprocessor config | |
# model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True) | |
# processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True) | |
model = modeling_MERT.MERTModel.from_pretrained("./MERT-v1-95M") | |
processor = Wav2Vec2FeatureExtractor.from_pretrained("./MERT-v1-95M") | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
MERT_BEST_LAYER_IDX = { | |
'EMO': 5, | |
'GS': 8, | |
'GTZAN': 7, | |
'MTGGenre': 7, | |
'MTGInstrument': 'all', | |
'MTGMood': 6, | |
'MTGTop50': 6, | |
'MTT': 'all', | |
'NSynthI': 6, | |
'NSynthP': 1, | |
'VocalSetS': 2, | |
'VocalSetT': 9, | |
} | |
MERT_BEST_LAYER_IDX = { | |
'EMO': 5, | |
'GS': 8, | |
'GTZAN': 7, | |
'MTGGenre': 7, | |
'MTGInstrument': 'all', | |
'MTGMood': 6, | |
'MTGTop50': 6, | |
'MTT': 'all', | |
'NSynthI': 6, | |
'NSynthP': 1, | |
'VocalSetS': 2, | |
'VocalSetT': 9, | |
} | |
CLASSIFIERS = { | |
} | |
ID2CLASS = { | |
} | |
TASKS = ['GS', 'MTGInstrument', 'MTGGenre', 'MTGTop50', 'MTGMood', 'NSynthI', 'NSynthP', 'VocalSetS', 'VocalSetT','EMO',] | |
Regression_TASKS = ['EMO'] | |
head_dir = './Prediction_Head/best-layer-MERT-v1-95M' | |
for task in TASKS: | |
print('loading', task) | |
with open(os.path.join(head_dir,f'{task}.id2class.json'), 'r') as f: | |
ID2CLASS[task]=json.load(f) | |
num_class = len(ID2CLASS[task].keys()) | |
CLASSIFIERS[task] = MLPProberBase(d=768, layer=MERT_BEST_LAYER_IDX[task], num_outputs=num_class) | |
CLASSIFIERS[task].load_state_dict(torch.load(f'{head_dir}/{task}.ckpt')['state_dict']) | |
CLASSIFIERS[task].to(device) | |
model.to(device) | |
def model_infernce(inputs): | |
waveform, sample_rate = torchaudio.load(inputs) | |
resample_rate = processor.sampling_rate | |
# make sure the sample_rate aligned | |
if resample_rate != sample_rate: | |
# print(f'setting rate from {sample_rate} to {resample_rate}') | |
resampler = T.Resample(sample_rate, resample_rate) | |
waveform = resampler(waveform) | |
waveform = waveform.view(-1,) # make it (n_sample, ) | |
model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt") | |
model_inputs.to(device) | |
with torch.no_grad(): | |
model_outputs = model(**model_inputs, output_hidden_states=True) | |
# take a look at the output shape, there are 13 layers of representation | |
# each layer performs differently in different downstream tasks, you should choose empirically | |
all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()[1:,:,:].unsqueeze(0) | |
print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim] | |
all_layer_hidden_states = all_layer_hidden_states.mean(dim=2) | |
task_output_texts = "" | |
df = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3']) | |
df_objects = [] | |
for task in TASKS: | |
num_class = len(ID2CLASS[task].keys()) | |
if MERT_BEST_LAYER_IDX[task] == 'all': | |
logits = CLASSIFIERS[task](all_layer_hidden_states) # [1, 87] | |
else: | |
logits = CLASSIFIERS[task](all_layer_hidden_states[:, MERT_BEST_LAYER_IDX[task]]) | |
# print(f'task {task} logits:', logits.shape, 'num class:', num_class) | |
sorted_idx = torch.argsort(logits, dim = -1, descending=True)[0] # batch =1 | |
sorted_prob,_ = torch.sort(nn.functional.softmax(logits[0], dim=-1), dim=-1, descending=True) | |
# print(sorted_prob) | |
# print(sorted_prob.shape) | |
top_n_show = 3 if num_class >= 3 else num_class | |
task_output_texts = task_output_texts + f"TASK {task} output:\n" + "\n".join([str(ID2CLASS[task][str(sorted_idx[idx].item())])+f', probability: {sorted_prob[idx].item():.2%}' for idx in range(top_n_show)]) + '\n' | |
task_output_texts = task_output_texts + '----------------------\n' | |
row_elements = [task] | |
for idx in range(top_n_show): | |
print(ID2CLASS[task]) | |
# print('id', str(sorted_idx[idx].item())) | |
output_class_name = str(ID2CLASS[task][str(sorted_idx[idx].item())]) | |
output_class_name = re.sub(r'^\w+---', '', output_class_name) | |
output_class_name = re.sub(r'^\w+\/\w+---', '', output_class_name) | |
# print('output name', output_class_name) | |
output_prob = f' {sorted_prob[idx].item():.2%}' | |
row_elements.append(output_class_name+output_prob) | |
# fill empty elment | |
for _ in range(4 - len(row_elements)): | |
row_elements.append(' ') | |
df_objects.append(row_elements) | |
df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3']) | |
return df | |
def convert_audio(inputs, microphone): | |
if (microphone is not None): | |
inputs = microphone | |
df = model_infernce(inputs) | |
return df | |
def live_convert_audio(microphone): | |
if (microphone is not None): | |
inputs = microphone | |
df = model_infernce(inputs) | |
return df | |
audio_chunked = gr.Interface( | |
fn=convert_audio, | |
inputs=inputs, | |
outputs=outputs, | |
allow_flagging="never", | |
title=title, | |
description=description, | |
article=article, | |
examples=audio_examples, | |
) | |
live_audio_chunked = gr.Interface( | |
fn=live_convert_audio, | |
inputs=live_inputs, | |
outputs=outputs_live, | |
allow_flagging="never", | |
title=title, | |
description=description, | |
article=article, | |
# examples=audio_examples, | |
live=True, | |
) | |
demo = gr.Blocks() | |
with demo: | |
gr.TabbedInterface( | |
[ | |
audio_chunked, | |
live_audio_chunked, | |
], | |
[ | |
"Audio File or Recording", | |
"Live Streaming Music" | |
] | |
) | |
# demo.queue(concurrency_count=1, max_size=5) | |
demo.launch(show_api=False) |