“WadoodAbdul”
commited on
Commit
·
cc05af6
1
Parent(s):
9f7ed19
intermediate commit
Browse files- app.py +169 -71
- src/about.py +14 -7
- src/display/utils.py +41 -26
- src/envs.py +5 -5
- src/leaderboard/read_evals.py +22 -21
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import subprocess
|
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
@@ -22,9 +23,9 @@ from src.display.utils import (
|
|
22 |
TYPES,
|
23 |
AutoEvalColumn,
|
24 |
ModelType,
|
25 |
-
|
26 |
WeightType,
|
27 |
-
|
28 |
)
|
29 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
@@ -34,20 +35,21 @@ from src.submission.submit import add_new_eval
|
|
34 |
def restart_space():
|
35 |
API.restart_space(repo_id=REPO_ID)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
51 |
|
52 |
|
53 |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
@@ -64,11 +66,11 @@ leaderboard_df = original_df.copy()
|
|
64 |
def update_table(
|
65 |
hidden_df: pd.DataFrame,
|
66 |
columns: list,
|
67 |
-
type_query: list,
|
68 |
-
precision_query: str,
|
69 |
-
size_query: list,
|
70 |
-
show_deleted: bool,
|
71 |
query: str,
|
|
|
|
|
|
|
|
|
72 |
):
|
73 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
74 |
filtered_df = filter_queries(query, filtered_df)
|
@@ -86,9 +88,7 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
86 |
AutoEvalColumn.model.name,
|
87 |
]
|
88 |
# We use COLS to maintain sorting
|
89 |
-
filtered_df = df[
|
90 |
-
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
91 |
-
]
|
92 |
return filtered_df
|
93 |
|
94 |
|
@@ -105,7 +105,11 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
105 |
if len(final_df) > 0:
|
106 |
filtered_df = pd.concat(final_df)
|
107 |
filtered_df = filtered_df.drop_duplicates(
|
108 |
-
subset=[
|
|
|
|
|
|
|
|
|
109 |
)
|
110 |
|
111 |
return filtered_df
|
@@ -115,19 +119,26 @@ def filter_models(
|
|
115 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
116 |
) -> pd.DataFrame:
|
117 |
# Show all models
|
118 |
-
if show_deleted:
|
119 |
-
|
120 |
-
else: # Show only still on the hub models
|
121 |
-
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
return filtered_df
|
133 |
|
@@ -138,7 +149,7 @@ with demo:
|
|
138 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
139 |
|
140 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
141 |
-
with gr.TabItem("🏅
|
142 |
with gr.Row():
|
143 |
with gr.Column():
|
144 |
with gr.Row():
|
@@ -149,11 +160,101 @@ with demo:
|
|
149 |
)
|
150 |
with gr.Row():
|
151 |
shown_columns = gr.CheckboxGroup(
|
152 |
-
choices=[
|
|
|
153 |
c.name
|
154 |
for c in fields(AutoEvalColumn)
|
155 |
-
if not c.hidden and not c.never_hidden
|
156 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
value=[
|
158 |
c.name
|
159 |
for c in fields(AutoEvalColumn)
|
@@ -163,12 +264,12 @@ with demo:
|
|
163 |
elem_id="column-select",
|
164 |
interactive=True,
|
165 |
)
|
166 |
-
with gr.Row():
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
with gr.Column(min_width=320):
|
171 |
-
#with gr.Box(elem_id="box-filter"):
|
172 |
filter_columns_type = gr.CheckboxGroup(
|
173 |
label="Model types",
|
174 |
choices=[t.to_str() for t in ModelType],
|
@@ -176,26 +277,23 @@ with demo:
|
|
176 |
interactive=True,
|
177 |
elem_id="filter-columns-type",
|
178 |
)
|
179 |
-
filter_columns_precision = gr.CheckboxGroup(
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
)
|
186 |
-
filter_columns_size = gr.CheckboxGroup(
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
)
|
193 |
|
194 |
leaderboard_table = gr.components.Dataframe(
|
195 |
-
value=leaderboard_df[
|
196 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
197 |
-
+ shown_columns.value
|
198 |
-
],
|
199 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
200 |
datatype=TYPES,
|
201 |
elem_id="leaderboard-table",
|
@@ -215,25 +313,25 @@ with demo:
|
|
215 |
[
|
216 |
hidden_leaderboard_table_for_search,
|
217 |
shown_columns,
|
218 |
-
filter_columns_type,
|
219 |
-
filter_columns_precision,
|
220 |
-
filter_columns_size,
|
221 |
-
deleted_models_visibility,
|
222 |
search_bar,
|
|
|
223 |
],
|
224 |
leaderboard_table,
|
225 |
)
|
226 |
-
for selector in [
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
selector.change(
|
228 |
update_table,
|
229 |
[
|
230 |
hidden_leaderboard_table_for_search,
|
231 |
shown_columns,
|
232 |
-
filter_columns_type,
|
233 |
-
filter_columns_precision,
|
234 |
-
filter_columns_size,
|
235 |
-
deleted_models_visibility,
|
236 |
search_bar,
|
|
|
237 |
],
|
238 |
leaderboard_table,
|
239 |
queue=True,
|
@@ -342,4 +440,4 @@ with demo:
|
|
342 |
scheduler = BackgroundScheduler()
|
343 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
344 |
scheduler.start()
|
345 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import subprocess
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
23 |
TYPES,
|
24 |
AutoEvalColumn,
|
25 |
ModelType,
|
26 |
+
Precision,
|
27 |
WeightType,
|
28 |
+
fields,
|
29 |
)
|
30 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
31 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
35 |
def restart_space():
|
36 |
API.restart_space(repo_id=REPO_ID)
|
37 |
|
38 |
+
|
39 |
+
# try:
|
40 |
+
# print(EVAL_REQUESTS_PATH)
|
41 |
+
# snapshot_download(
|
42 |
+
# repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
43 |
+
# )
|
44 |
+
# except Exception:
|
45 |
+
# restart_space()
|
46 |
+
# try:
|
47 |
+
# print(EVAL_RESULTS_PATH)
|
48 |
+
# snapshot_download(
|
49 |
+
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
50 |
+
# )
|
51 |
+
# except Exception:
|
52 |
+
# restart_space()
|
53 |
|
54 |
|
55 |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
66 |
def update_table(
|
67 |
hidden_df: pd.DataFrame,
|
68 |
columns: list,
|
|
|
|
|
|
|
|
|
69 |
query: str,
|
70 |
+
type_query: list = None,
|
71 |
+
precision_query: str = None,
|
72 |
+
size_query: list = None,
|
73 |
+
show_deleted: bool = False,
|
74 |
):
|
75 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
76 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
88 |
AutoEvalColumn.model.name,
|
89 |
]
|
90 |
# We use COLS to maintain sorting
|
91 |
+
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns]]
|
|
|
|
|
92 |
return filtered_df
|
93 |
|
94 |
|
|
|
105 |
if len(final_df) > 0:
|
106 |
filtered_df = pd.concat(final_df)
|
107 |
filtered_df = filtered_df.drop_duplicates(
|
108 |
+
subset=[
|
109 |
+
AutoEvalColumn.model.name,
|
110 |
+
# AutoEvalColumn.precision.name,
|
111 |
+
# AutoEvalColumn.revision.name,
|
112 |
+
]
|
113 |
)
|
114 |
|
115 |
return filtered_df
|
|
|
119 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
120 |
) -> pd.DataFrame:
|
121 |
# Show all models
|
122 |
+
# if show_deleted:
|
123 |
+
# filtered_df = df
|
124 |
+
# else: # Show only still on the hub models
|
125 |
+
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
126 |
+
|
127 |
+
filtered_df = df
|
128 |
|
129 |
+
if type_query is not None:
|
130 |
+
type_emoji = [t[0] for t in type_query]
|
131 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
132 |
|
133 |
+
if precision_query is not None:
|
134 |
+
if AutoEvalColumn.precision.name in df.columns:
|
135 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
136 |
+
|
137 |
+
if size_query is not None:
|
138 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
139 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
140 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
141 |
+
filtered_df = filtered_df.loc[mask]
|
142 |
|
143 |
return filtered_df
|
144 |
|
|
|
149 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
150 |
|
151 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
152 |
+
with gr.TabItem("🏅 NER Datasets", elem_id="llm-benchmark-tab-table", id=0):
|
153 |
with gr.Row():
|
154 |
with gr.Column():
|
155 |
with gr.Row():
|
|
|
160 |
)
|
161 |
with gr.Row():
|
162 |
shown_columns = gr.CheckboxGroup(
|
163 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
|
164 |
+
value=[
|
165 |
c.name
|
166 |
for c in fields(AutoEvalColumn)
|
167 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
168 |
],
|
169 |
+
label="Select columns to show",
|
170 |
+
elem_id="column-select",
|
171 |
+
interactive=True,
|
172 |
+
)
|
173 |
+
# with gr.Row():
|
174 |
+
# deleted_models_visibility = gr.Checkbox(
|
175 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
176 |
+
# )
|
177 |
+
with gr.Column(min_width=320):
|
178 |
+
# with gr.Box(elem_id="box-filter"):
|
179 |
+
filter_columns_type = gr.CheckboxGroup(
|
180 |
+
label="Model types",
|
181 |
+
choices=[t.to_str() for t in ModelType],
|
182 |
+
value=[t.to_str() for t in ModelType],
|
183 |
+
interactive=True,
|
184 |
+
elem_id="filter-columns-type",
|
185 |
+
)
|
186 |
+
# filter_columns_precision = gr.CheckboxGroup(
|
187 |
+
# label="Precision",
|
188 |
+
# choices=[i.value.name for i in Precision],
|
189 |
+
# value=[i.value.name for i in Precision],
|
190 |
+
# interactive=True,
|
191 |
+
# elem_id="filter-columns-precision",
|
192 |
+
# )
|
193 |
+
# filter_columns_size = gr.CheckboxGroup(
|
194 |
+
# label="Model sizes (in billions of parameters)",
|
195 |
+
# choices=list(NUMERIC_INTERVALS.keys()),
|
196 |
+
# value=list(NUMERIC_INTERVALS.keys()),
|
197 |
+
# interactive=True,
|
198 |
+
# elem_id="filter-columns-size",
|
199 |
+
# )
|
200 |
+
|
201 |
+
leaderboard_table = gr.components.Dataframe(
|
202 |
+
value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
203 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
204 |
+
datatype=TYPES,
|
205 |
+
elem_id="leaderboard-table",
|
206 |
+
interactive=False,
|
207 |
+
visible=True,
|
208 |
+
)
|
209 |
+
|
210 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
211 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
212 |
+
value=original_df[COLS],
|
213 |
+
headers=COLS,
|
214 |
+
datatype=TYPES,
|
215 |
+
visible=False,
|
216 |
+
)
|
217 |
+
search_bar.submit(
|
218 |
+
update_table,
|
219 |
+
[
|
220 |
+
hidden_leaderboard_table_for_search,
|
221 |
+
shown_columns,
|
222 |
+
search_bar,
|
223 |
+
filter_columns_type,
|
224 |
+
],
|
225 |
+
leaderboard_table,
|
226 |
+
)
|
227 |
+
for selector in [
|
228 |
+
shown_columns,
|
229 |
+
filter_columns_type,
|
230 |
+
# filter_columns_precision,
|
231 |
+
# filter_columns_size,
|
232 |
+
# deleted_models_visibility,
|
233 |
+
]:
|
234 |
+
selector.change(
|
235 |
+
update_table,
|
236 |
+
[
|
237 |
+
hidden_leaderboard_table_for_search,
|
238 |
+
shown_columns,
|
239 |
+
search_bar,
|
240 |
+
filter_columns_type,
|
241 |
+
],
|
242 |
+
leaderboard_table,
|
243 |
+
queue=True,
|
244 |
+
)
|
245 |
+
|
246 |
+
with gr.TabItem("🏅 M2 Types", elem_id="llm-benchmark-tab-table", id=4):
|
247 |
+
with gr.Row():
|
248 |
+
with gr.Column():
|
249 |
+
with gr.Row():
|
250 |
+
search_bar = gr.Textbox(
|
251 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
252 |
+
show_label=False,
|
253 |
+
elem_id="search-bar",
|
254 |
+
)
|
255 |
+
with gr.Row():
|
256 |
+
shown_columns = gr.CheckboxGroup(
|
257 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
|
258 |
value=[
|
259 |
c.name
|
260 |
for c in fields(AutoEvalColumn)
|
|
|
264 |
elem_id="column-select",
|
265 |
interactive=True,
|
266 |
)
|
267 |
+
# with gr.Row():
|
268 |
+
# deleted_models_visibility = gr.Checkbox(
|
269 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
270 |
+
# )
|
271 |
with gr.Column(min_width=320):
|
272 |
+
# with gr.Box(elem_id="box-filter"):
|
273 |
filter_columns_type = gr.CheckboxGroup(
|
274 |
label="Model types",
|
275 |
choices=[t.to_str() for t in ModelType],
|
|
|
277 |
interactive=True,
|
278 |
elem_id="filter-columns-type",
|
279 |
)
|
280 |
+
# filter_columns_precision = gr.CheckboxGroup(
|
281 |
+
# label="Precision",
|
282 |
+
# choices=[i.value.name for i in Precision],
|
283 |
+
# value=[i.value.name for i in Precision],
|
284 |
+
# interactive=True,
|
285 |
+
# elem_id="filter-columns-precision",
|
286 |
+
# )
|
287 |
+
# filter_columns_size = gr.CheckboxGroup(
|
288 |
+
# label="Model sizes (in billions of parameters)",
|
289 |
+
# choices=list(NUMERIC_INTERVALS.keys()),
|
290 |
+
# value=list(NUMERIC_INTERVALS.keys()),
|
291 |
+
# interactive=True,
|
292 |
+
# elem_id="filter-columns-size",
|
293 |
+
# )
|
294 |
|
295 |
leaderboard_table = gr.components.Dataframe(
|
296 |
+
value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
|
|
|
|
|
|
297 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
298 |
datatype=TYPES,
|
299 |
elem_id="leaderboard-table",
|
|
|
313 |
[
|
314 |
hidden_leaderboard_table_for_search,
|
315 |
shown_columns,
|
|
|
|
|
|
|
|
|
316 |
search_bar,
|
317 |
+
filter_columns_type,
|
318 |
],
|
319 |
leaderboard_table,
|
320 |
)
|
321 |
+
for selector in [
|
322 |
+
shown_columns,
|
323 |
+
filter_columns_type,
|
324 |
+
# filter_columns_precision,
|
325 |
+
# filter_columns_size,
|
326 |
+
# deleted_models_visibility,
|
327 |
+
]:
|
328 |
selector.change(
|
329 |
update_table,
|
330 |
[
|
331 |
hidden_leaderboard_table_for_search,
|
332 |
shown_columns,
|
|
|
|
|
|
|
|
|
333 |
search_bar,
|
334 |
+
filter_columns_type,
|
335 |
],
|
336 |
leaderboard_table,
|
337 |
queue=True,
|
|
|
440 |
scheduler = BackgroundScheduler()
|
441 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
442 |
scheduler.start()
|
443 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/about.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
|
|
4 |
@dataclass
|
5 |
class Task:
|
6 |
benchmark: str
|
@@ -11,17 +12,23 @@ class Task:
|
|
11 |
# Select your tasks here
|
12 |
# ---------------------------------------------------
|
13 |
class Tasks(Enum):
|
14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
-
task0 = Task("anli_r1", "acc", "ANLI")
|
16 |
-
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# ---------------------------------------------------
|
20 |
|
21 |
|
22 |
-
|
23 |
# Your leaderboard name
|
24 |
-
TITLE = """<h1 align="center" id="space-title">
|
25 |
|
26 |
# What does your leaderboard evaluate?
|
27 |
INTRODUCTION_TEXT = """
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
4 |
+
|
5 |
@dataclass
|
6 |
class Task:
|
7 |
benchmark: str
|
|
|
12 |
# Select your tasks here
|
13 |
# ---------------------------------------------------
|
14 |
class Tasks(Enum):
|
15 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
16 |
+
# task0 = Task("anli_r1", "acc", "ANLI")
|
17 |
+
# task1 = Task("logiqa", "acc_norm", "LogiQA")
|
18 |
+
task0 = Task("ncbi", "f1", "NCBI")
|
19 |
+
task1 = Task("bc5cdr", "f1", "BC5CD")
|
20 |
+
task3 = Task("chia", "f1", "CHIA")
|
21 |
+
task4 = Task("biored", "f1", "BIORED")
|
22 |
+
# task5 = Task("", "f1", "")
|
23 |
+
# task6 = Task("", "f1", "")
|
24 |
+
|
25 |
+
|
26 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
27 |
# ---------------------------------------------------
|
28 |
|
29 |
|
|
|
30 |
# Your leaderboard name
|
31 |
+
TITLE = """<h1 align="center" id="space-title">BioMed NER Leaderboard</h1>"""
|
32 |
|
33 |
# What does your leaderboard evaluate?
|
34 |
INTRODUCTION_TEXT = """
|
src/display/utils.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
|
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
|
@@ -20,29 +21,33 @@ class ColumnContent:
|
|
20 |
hidden: bool = False
|
21 |
never_hidden: bool = False
|
22 |
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
-
#Scores
|
29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average
|
30 |
for task in Tasks:
|
31 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
# Model information
|
33 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
-
auto_eval_column_dict.append(
|
41 |
-
|
|
|
|
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
45 |
|
|
|
46 |
## For the queue columns in the submission tab
|
47 |
@dataclass(frozen=True)
|
48 |
class EvalQueueColumn: # Queue column
|
@@ -53,19 +58,22 @@ class EvalQueueColumn: # Queue column
|
|
53 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
status = ColumnContent("status", "str", True)
|
55 |
|
|
|
56 |
## All the model information that we might need
|
57 |
@dataclass
|
58 |
class ModelDetails:
|
59 |
name: str
|
60 |
display_name: str = ""
|
61 |
-
symbol: str = ""
|
62 |
|
63 |
|
64 |
class ModelType(Enum):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
Unknown = ModelDetails(name="", symbol="?")
|
70 |
|
71 |
def to_str(self, separator=" "):
|
@@ -73,28 +81,34 @@ class ModelType(Enum):
|
|
73 |
|
74 |
@staticmethod
|
75 |
def from_str(type):
|
76 |
-
if "
|
77 |
-
return ModelType.
|
78 |
-
if "
|
79 |
-
return ModelType.
|
80 |
-
if "
|
81 |
-
|
82 |
-
if "
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
return ModelType.Unknown
|
85 |
|
|
|
86 |
class WeightType(Enum):
|
87 |
Adapter = ModelDetails("Adapter")
|
88 |
Original = ModelDetails("Original")
|
89 |
Delta = ModelDetails("Delta")
|
90 |
|
|
|
91 |
class Precision(Enum):
|
92 |
float16 = ModelDetails("float16")
|
93 |
bfloat16 = ModelDetails("bfloat16")
|
94 |
float32 = ModelDetails("float32")
|
95 |
-
#qt_8bit = ModelDetails("8bit")
|
96 |
-
#qt_4bit = ModelDetails("4bit")
|
97 |
-
#qt_GPTQ = ModelDetails("GPTQ")
|
98 |
Unknown = ModelDetails("?")
|
99 |
|
100 |
def from_str(precision):
|
@@ -104,14 +118,15 @@ class Precision(Enum):
|
|
104 |
return Precision.bfloat16
|
105 |
if precision in ["float32"]:
|
106 |
return Precision.float32
|
107 |
-
#if precision in ["8bit"]:
|
108 |
# return Precision.qt_8bit
|
109 |
-
#if precision in ["4bit"]:
|
110 |
# return Precision.qt_4bit
|
111 |
-
#if precision in ["GPTQ", "None"]:
|
112 |
# return Precision.qt_GPTQ
|
113 |
return Precision.Unknown
|
114 |
|
|
|
115 |
# Column selection
|
116 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
117 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
8 |
+
|
9 |
def fields(raw_class):
|
10 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
11 |
|
|
|
21 |
hidden: bool = False
|
22 |
never_hidden: bool = False
|
23 |
|
24 |
+
|
25 |
## Leaderboard columns
|
26 |
auto_eval_column_dict = []
|
27 |
# Init
|
28 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
30 |
+
# Scores
|
31 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True)])
|
32 |
for task in Tasks:
|
33 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False)])
|
34 |
# Model information
|
35 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
36 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
37 |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
38 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, True)])
|
39 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
40 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
41 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, True)])
|
42 |
+
auto_eval_column_dict.append(
|
43 |
+
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, True)]
|
44 |
+
)
|
45 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
46 |
|
47 |
# We use make dataclass to dynamically fill the scores from Tasks
|
48 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
49 |
|
50 |
+
|
51 |
## For the queue columns in the submission tab
|
52 |
@dataclass(frozen=True)
|
53 |
class EvalQueueColumn: # Queue column
|
|
|
58 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
59 |
status = ColumnContent("status", "str", True)
|
60 |
|
61 |
+
|
62 |
## All the model information that we might need
|
63 |
@dataclass
|
64 |
class ModelDetails:
|
65 |
name: str
|
66 |
display_name: str = ""
|
67 |
+
symbol: str = "" # emoji
|
68 |
|
69 |
|
70 |
class ModelType(Enum):
|
71 |
+
ZEROSHOT = ModelDetails(name="zero-shot", symbol="⚫")
|
72 |
+
FINETUNED = ModelDetails(name="fine-tuned", symbol="⚪")
|
73 |
+
# PT = ModelDetails(name="pretrained", symbol="🟢")
|
74 |
+
# FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
75 |
+
# IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
76 |
+
# RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
77 |
Unknown = ModelDetails(name="", symbol="?")
|
78 |
|
79 |
def to_str(self, separator=" "):
|
|
|
81 |
|
82 |
@staticmethod
|
83 |
def from_str(type):
|
84 |
+
if "zero-shot" in type or "⚫" in type:
|
85 |
+
return ModelType.ZEROSHOT
|
86 |
+
if "fine-tuned" in type or "⚪" in type:
|
87 |
+
return ModelType.FINETUNED
|
88 |
+
# if "fine-tuned" in type or "🔶" in type:
|
89 |
+
# return ModelType.FT
|
90 |
+
# if "pretrained" in type or "🟢" in type:
|
91 |
+
# return ModelType.PT
|
92 |
+
# if "RL-tuned" in type or "🟦" in type:
|
93 |
+
# return ModelType.RL
|
94 |
+
# if "instruction-tuned" in type or "⭕" in type:
|
95 |
+
# return ModelType.IFT
|
96 |
return ModelType.Unknown
|
97 |
|
98 |
+
|
99 |
class WeightType(Enum):
|
100 |
Adapter = ModelDetails("Adapter")
|
101 |
Original = ModelDetails("Original")
|
102 |
Delta = ModelDetails("Delta")
|
103 |
|
104 |
+
|
105 |
class Precision(Enum):
|
106 |
float16 = ModelDetails("float16")
|
107 |
bfloat16 = ModelDetails("bfloat16")
|
108 |
float32 = ModelDetails("float32")
|
109 |
+
# qt_8bit = ModelDetails("8bit")
|
110 |
+
# qt_4bit = ModelDetails("4bit")
|
111 |
+
# qt_GPTQ = ModelDetails("GPTQ")
|
112 |
Unknown = ModelDetails("?")
|
113 |
|
114 |
def from_str(precision):
|
|
|
118 |
return Precision.bfloat16
|
119 |
if precision in ["float32"]:
|
120 |
return Precision.float32
|
121 |
+
# if precision in ["8bit"]:
|
122 |
# return Precision.qt_8bit
|
123 |
+
# if precision in ["4bit"]:
|
124 |
# return Precision.qt_4bit
|
125 |
+
# if precision in ["GPTQ", "None"]:
|
126 |
# return Precision.qt_GPTQ
|
127 |
return Precision.Unknown
|
128 |
|
129 |
+
|
130 |
# Column selection
|
131 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
132 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
src/envs.py
CHANGED
@@ -4,17 +4,17 @@ from huggingface_hub import HfApi
|
|
4 |
|
5 |
# Info to change for your repository
|
6 |
# ----------------------------------
|
7 |
-
TOKEN = os.environ.get("TOKEN")
|
8 |
|
9 |
-
OWNER = "
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
13 |
-
QUEUE_REPO = f"{OWNER}/
|
14 |
-
RESULTS_REPO = f"{OWNER}/
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
|
19 |
# Local caches
|
20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
|
|
4 |
|
5 |
# Info to change for your repository
|
6 |
# ----------------------------------
|
7 |
+
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
8 |
|
9 |
+
OWNER = "m42-health" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
13 |
+
QUEUE_REPO = f"{OWNER}/ner_leaderboard_requests"
|
14 |
+
RESULTS_REPO = f"{OWNER}/ner_leaderboard_results"
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
+
CACHE_PATH = os.getenv("HF_HOME", ".")
|
18 |
|
19 |
# Local caches
|
20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
src/leaderboard/read_evals.py
CHANGED
@@ -8,28 +8,28 @@ import dateutil
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn, ModelType,
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
15 |
@dataclass
|
16 |
class EvalResult:
|
17 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
-
|
19 |
-
eval_name: str
|
20 |
-
full_model: str
|
21 |
-
org: str
|
22 |
model: str
|
23 |
-
revision: str
|
24 |
results: dict
|
25 |
precision: Precision = Precision.Unknown
|
26 |
-
model_type: ModelType = ModelType.Unknown
|
27 |
-
weight_type: WeightType = WeightType.Original
|
28 |
-
architecture: str = "Unknown"
|
29 |
license: str = "?"
|
30 |
likes: int = 0
|
31 |
num_params: int = 0
|
32 |
-
date: str = ""
|
33 |
still_on_hub: bool = False
|
34 |
|
35 |
@classmethod
|
@@ -76,7 +76,7 @@ class EvalResult:
|
|
76 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
77 |
continue
|
78 |
|
79 |
-
mean_acc = np.mean(accs) * 100.0
|
80 |
results[task.benchmark] = mean_acc
|
81 |
|
82 |
return self(
|
@@ -85,10 +85,10 @@ class EvalResult:
|
|
85 |
org=org,
|
86 |
model=model,
|
87 |
results=results,
|
88 |
-
precision=precision,
|
89 |
-
revision=
|
90 |
still_on_hub=still_on_hub,
|
91 |
-
architecture=architecture
|
92 |
)
|
93 |
|
94 |
def update_with_request_file(self, requests_path):
|
@@ -104,8 +104,12 @@ class EvalResult:
|
|
104 |
self.likes = request.get("likes", 0)
|
105 |
self.num_params = request.get("params", 0)
|
106 |
self.date = request.get("submitted_time", "")
|
|
|
107 |
except Exception:
|
108 |
-
print(
|
|
|
|
|
|
|
109 |
|
110 |
def to_dict(self):
|
111 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
@@ -146,10 +150,7 @@ def get_request_file_for_model(requests_path, model_name, precision):
|
|
146 |
for tmp_request_file in request_files:
|
147 |
with open(tmp_request_file, "r") as f:
|
148 |
req_content = json.load(f)
|
149 |
-
if (
|
150 |
-
req_content["status"] in ["FINISHED"]
|
151 |
-
and req_content["precision"] == precision.split(".")[-1]
|
152 |
-
):
|
153 |
request_file = tmp_request_file
|
154 |
return request_file
|
155 |
|
@@ -188,7 +189,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
188 |
results = []
|
189 |
for v in eval_results.values():
|
190 |
try:
|
191 |
-
v.to_dict()
|
192 |
results.append(v)
|
193 |
except KeyError: # not all eval values present
|
194 |
continue
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
15 |
@dataclass
|
16 |
class EvalResult:
|
17 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
|
18 |
+
|
19 |
+
eval_name: str # org_model_precision (uid)
|
20 |
+
full_model: str # org/model (path on hub)
|
21 |
+
org: str
|
22 |
model: str
|
23 |
+
revision: str # commit hash, "" if main
|
24 |
results: dict
|
25 |
precision: Precision = Precision.Unknown
|
26 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
+
architecture: str = "Unknown"
|
29 |
license: str = "?"
|
30 |
likes: int = 0
|
31 |
num_params: int = 0
|
32 |
+
date: str = "" # submission date of request file
|
33 |
still_on_hub: bool = False
|
34 |
|
35 |
@classmethod
|
|
|
76 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
77 |
continue
|
78 |
|
79 |
+
mean_acc = np.mean(accs) # * 100.0
|
80 |
results[task.benchmark] = mean_acc
|
81 |
|
82 |
return self(
|
|
|
85 |
org=org,
|
86 |
model=model,
|
87 |
results=results,
|
88 |
+
precision=precision,
|
89 |
+
revision=config.get("model_sha", ""),
|
90 |
still_on_hub=still_on_hub,
|
91 |
+
architecture=architecture,
|
92 |
)
|
93 |
|
94 |
def update_with_request_file(self, requests_path):
|
|
|
104 |
self.likes = request.get("likes", 0)
|
105 |
self.num_params = request.get("params", 0)
|
106 |
self.date = request.get("submitted_time", "")
|
107 |
+
# self.precision = request.get("precision", "float32")
|
108 |
except Exception:
|
109 |
+
print(
|
110 |
+
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
|
111 |
+
)
|
112 |
+
print(f" Args used were - {request_file=}, {requests_path=}, {self.full_model=},")
|
113 |
|
114 |
def to_dict(self):
|
115 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
150 |
for tmp_request_file in request_files:
|
151 |
with open(tmp_request_file, "r") as f:
|
152 |
req_content = json.load(f)
|
153 |
+
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
|
|
|
|
|
|
|
154 |
request_file = tmp_request_file
|
155 |
return request_file
|
156 |
|
|
|
189 |
results = []
|
190 |
for v in eval_results.values():
|
191 |
try:
|
192 |
+
v.to_dict() # we test if the dict version is complete
|
193 |
results.append(v)
|
194 |
except KeyError: # not all eval values present
|
195 |
continue
|