Spaces:
Sleeping
Sleeping
import pickle | |
import requests | |
import umap | |
from numba.typed import List | |
import torch | |
from sentence_transformers import SentenceTransformer | |
import time | |
from pathlib import Path | |
def check_resources(files_dict, basemap_path, mapper_params_path): | |
""" | |
Check if all required resources are present. | |
Args: | |
files_dict (dict): Dictionary mapping filenames to their download URLs | |
basemap_path (str): Path to the basemap pickle file | |
mapper_params_path (str): Path to the UMAP mapper parameters pickle file | |
Returns: | |
bool: True if all resources are present, False otherwise | |
""" | |
all_files_present = True | |
# Check downloaded files | |
for filename in files_dict.keys(): | |
if not Path(filename).exists(): | |
print(f"Missing file: {filename}") | |
all_files_present = False | |
# Check basemap | |
if not Path(basemap_path).exists(): | |
print(f"Missing basemap file: {basemap_path}") | |
all_files_present = False | |
# Check mapper params | |
if not Path(mapper_params_path).exists(): | |
print(f"Missing mapper params file: {mapper_params_path}") | |
all_files_present = False | |
return all_files_present | |
def download_required_files(files_dict): | |
""" | |
Download required files from URLs only if they don't exist. | |
Args: | |
files_dict (dict): Dictionary mapping filenames to their download URLs | |
""" | |
print(f"Checking required files: {time.strftime('%Y-%m-%d %H:%M:%S')}") | |
files_to_download = { | |
filename: url | |
for filename, url in files_dict.items() | |
if not Path(filename).exists() | |
} | |
if not files_to_download: | |
print("All files already present, skipping downloads") | |
return | |
print(f"Downloading missing files: {list(files_to_download.keys())}") | |
for filename, url in files_to_download.items(): | |
print(f"Downloading {filename}...") | |
response = requests.get(url) | |
with open(filename, "wb") as f: | |
f.write(response.content) | |
def setup_basemap_data(basemap_path): | |
""" | |
Load and setup the base map data. | |
Args: | |
basemap_path (str): Path to the basemap pickle file | |
""" | |
print(f"Getting basemap data: {time.strftime('%Y-%m-%d %H:%M:%S')}") | |
basedata_df = pickle.load(open(basemap_path, 'rb')) | |
return basedata_df | |
def setup_mapper(mapper_params_path): | |
""" | |
Setup and configure the UMAP mapper. | |
Args: | |
mapper_params_path (str): Path to the UMAP mapper parameters pickle file | |
""" | |
print(f"Getting Mapper: {time.strftime('%Y-%m-%d %H:%M:%S')}") | |
params_new = pickle.load(open(mapper_params_path, 'rb')) | |
print("setting up mapper...") | |
mapper = umap.UMAP() | |
umap_params = {k: v for k, v in params_new.get('umap_params', {}).items() | |
if k != 'target_backend'} | |
mapper.set_params(**umap_params) | |
for attr, value in params_new.get('umap_attributes', {}).items(): | |
if attr != 'embedding_': | |
setattr(mapper, attr, value) | |
if 'embedding_' in params_new.get('umap_attributes', {}): | |
mapper.embedding_ = List(params_new['umap_attributes']['embedding_']) | |
return mapper | |
def setup_embedding_model(model_name): | |
""" | |
Setup the SentenceTransformer model. | |
Args: | |
model_name (str): Name or path of the SentenceTransformer model | |
""" | |
print(f"Setting up language model: {time.strftime('%Y-%m-%d %H:%M:%S')}") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
model = SentenceTransformer(model_name) | |
return model |