blindness_space / app.py
macapa's picture
Update app.py
d18a8bf verified
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from torchvision import transforms
from PIL import Image
import requests
import os
# URL del modelo en Hugging Face
model_url = "https://huggingface.co/macapa/blindness_clas/resolve/main/blindness_model.pth"
model_path = "best_model_resnet18.pth"
hf_hub_download(
repo_id='macapa/blindness_clas',
filename='best_model_resnet18.pth',
local_dir='.'
)
# Cargar el modelo PyTorch
model = torch.load(model_path, map_location=torch.device('cpu'))
# model.eval()
# Definir las transformaciones de la imagen
preprocess = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
# Definir las etiquetas de clasificaci贸n
labels = ["No Blindness", "Mild", "Moderate", "Severe", "Proliferative"]
# Funci贸n para predecir la clase de ceguera
def classify_image(img):
img = preprocess(img).unsqueeze(0)
with torch.no_grad():
outputs = model(img)
_, predicted = torch.max(outputs, 1)
return labels[predicted.item()]
# Definir la interfaz de Gradio
interface = gr.Interface(
fn=classify_image,
inputs=gr.Image(label="Carga una imagen aqu铆"),
outputs=gr.Label(num_top_classes=1),
title="Blindness Classification",
description="Classify the severity of blindness from retinal images."
)
# Ejecutar la aplicaci贸n
interface.launch(share=True)