Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -33,9 +33,9 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
33 |
base_model = models[0]
|
34 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
35 |
#controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
|
36 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
37 |
-
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
|
38 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=
|
39 |
controlnet_union = None
|
40 |
controlnet = None
|
41 |
last_model = models[0]
|
@@ -61,7 +61,7 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
61 |
clear_cache()
|
62 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
63 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
64 |
-
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
|
65 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
66 |
last_model = repo_id
|
67 |
last_cn_on = cn_on
|
@@ -71,7 +71,7 @@ def change_base_model(repo_id: str, cn_on: bool):
|
|
71 |
#progress(0, desc=f"Loading model: {repo_id}")
|
72 |
print(f"Loading model: {repo_id}")
|
73 |
clear_cache()
|
74 |
-
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
|
75 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
76 |
last_model = repo_id
|
77 |
last_cn_on = cn_on
|
@@ -123,9 +123,13 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
123 |
@spaces.GPU(duration=70)
|
124 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
|
125 |
global pipe
|
|
|
|
|
126 |
global controlnet
|
127 |
global controlnet_union
|
128 |
try:
|
|
|
|
|
129 |
pipe.to("cuda")
|
130 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
131 |
|
@@ -172,6 +176,10 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
172 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
173 |
lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
|
174 |
global pipe
|
|
|
|
|
|
|
|
|
175 |
if selected_index is None and not is_valid_lora(lora_json):
|
176 |
gr.Info("LoRA isn't selected.")
|
177 |
# raise gr.Error("You must select a LoRA before proceeding.")
|
@@ -221,6 +229,8 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
221 |
pipe.unload_lora_weights()
|
222 |
if selected_index is not None: pipe.unload_lora_weights()
|
223 |
pipe.to("cpu")
|
|
|
|
|
224 |
if controlnet is not None: controlnet.to("cpu")
|
225 |
if controlnet_union is not None: controlnet_union.to("cpu")
|
226 |
clear_cache()
|
|
|
33 |
base_model = models[0]
|
34 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
35 |
#controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
|
36 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
37 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
|
38 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1)
|
39 |
controlnet_union = None
|
40 |
controlnet = None
|
41 |
last_model = models[0]
|
|
|
61 |
clear_cache()
|
62 |
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
|
63 |
controlnet = FluxMultiControlNetModel([controlnet_union])
|
64 |
+
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype, vae=taef1)
|
65 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
66 |
last_model = repo_id
|
67 |
last_cn_on = cn_on
|
|
|
71 |
#progress(0, desc=f"Loading model: {repo_id}")
|
72 |
print(f"Loading model: {repo_id}")
|
73 |
clear_cache()
|
74 |
+
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype, vae=taef1)
|
75 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
76 |
last_model = repo_id
|
77 |
last_cn_on = cn_on
|
|
|
123 |
@spaces.GPU(duration=70)
|
124 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
|
125 |
global pipe
|
126 |
+
global taef1
|
127 |
+
global good_vae
|
128 |
global controlnet
|
129 |
global controlnet_union
|
130 |
try:
|
131 |
+
good_vae.to("cuda")
|
132 |
+
taef1.to("cuda")
|
133 |
pipe.to("cuda")
|
134 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
135 |
|
|
|
176 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
177 |
lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
|
178 |
global pipe
|
179 |
+
global taef1
|
180 |
+
global good_vae
|
181 |
+
global controlnet
|
182 |
+
global controlnet_union
|
183 |
if selected_index is None and not is_valid_lora(lora_json):
|
184 |
gr.Info("LoRA isn't selected.")
|
185 |
# raise gr.Error("You must select a LoRA before proceeding.")
|
|
|
229 |
pipe.unload_lora_weights()
|
230 |
if selected_index is not None: pipe.unload_lora_weights()
|
231 |
pipe.to("cpu")
|
232 |
+
good_vae.to("cpu")
|
233 |
+
taef1.to("cpu")
|
234 |
if controlnet is not None: controlnet.to("cpu")
|
235 |
if controlnet_union is not None: controlnet_union.to("cpu")
|
236 |
clear_cache()
|