|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import modin.pandas as pd |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
if torch.cuda.is_available(): |
|
PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000} |
|
torch.cuda.max_memory_allocated(device=device) |
|
torch.cuda.empty_cache() |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe = pipe.to(device) |
|
torch.cuda.empty_cache() |
|
|
|
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") |
|
refiner.enable_xformers_memory_efficient_attention() |
|
refiner = refiner.to(device) |
|
torch.cuda.empty_cache() |
|
|
|
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True) |
|
upscaler.enable_xformers_memory_efficient_attention() |
|
upscaler = upscaler.to(device) |
|
torch.cuda.empty_cache() |
|
else: |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True) |
|
pipe = pipe.to(device) |
|
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True) |
|
refiner = refiner.to(device) |
|
|
|
def genie (prompt, negative_prompt, height, width, scale, steps, seed, upscaler): |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
int_image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, height=height, width=width, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images |
|
torch.cuda.empty_cache() |
|
if upscaler == 'Yes': |
|
image = refiner(prompt=prompt, image=int_image).images[0] |
|
torch.cuda.empty_cache() |
|
upscaled = upscaler(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0] |
|
torch.cuda.empty_cache() |
|
return (image, upscaled) |
|
else: |
|
image = refiner(prompt=prompt, negative_prompt=negative_prompt, image=int_image).images[0] |
|
torch.cuda.empty_cache() |
|
return (image, image) |
|
|
|
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit. A Token is Any Word, Number, Symbol, or Punctuation. Everything Over 77 Will Be Truncated!'), |
|
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'), |
|
gr.Slider(512, 1024, 768, step=128, label='Height'), |
|
gr.Slider(512, 1024, 768, step=128, label='Width'), |
|
gr.Slider(1, 15, 10, step=.25, label='Guidance Scale: How Closely the AI follows the Prompt'), |
|
gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'), |
|
gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True, label='Seed'), |
|
gr.Radio(['Yes', 'No'], label='Upscale?')], |
|
outputs=['image', 'image'], |
|
title="Stable Diffusion XL 1.0 GPU", |
|
description="SDXL 1.0 GPU. <br><br><b>WARNING: Capable of producing NSFW (Softcore) images.</b>", |
|
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(concurrency_count=1).launch(debug=True, max_threads=80) |
|
|