Manjushri's picture
Update app.py
7dc4c93
raw
history blame
3.41 kB
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.cuda.is_available():
PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000}
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
upscaler.enable_xformers_memory_efficient_attention()
upscaler = upscaler.to(device)
torch.cuda.empty_cache()
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
pipe = pipe.to(device)
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True)
refiner = refiner.to(device)
def genie (prompt, negative_prompt, height, width, scale, steps, seed, upscaler):
generator = torch.Generator(device=device).manual_seed(seed)
int_image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, height=height, width=width, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images
torch.cuda.empty_cache()
if upscaler == 'Yes':
image = refiner(prompt=prompt, image=int_image).images[0]
torch.cuda.empty_cache()
upscaled = upscaler(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0]
torch.cuda.empty_cache()
return (image, upscaled)
else:
image = refiner(prompt=prompt, negative_prompt=negative_prompt, image=int_image).images[0]
torch.cuda.empty_cache()
return (image, image)
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit. A Token is Any Word, Number, Symbol, or Punctuation. Everything Over 77 Will Be Truncated!'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1024, 768, step=128, label='Height'),
gr.Slider(512, 1024, 768, step=128, label='Width'),
gr.Slider(1, 15, 10, step=.25, label='Guidance Scale: How Closely the AI follows the Prompt'),
gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'),
gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True, label='Seed'),
gr.Radio(['Yes', 'No'], label='Upscale?')],
outputs=['image', 'image'],
title="Stable Diffusion XL 1.0 GPU",
description="SDXL 1.0 GPU. <br><br><b>WARNING: Capable of producing NSFW (Softcore) images.</b>",
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(concurrency_count=1).launch(debug=True, max_threads=80)