Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,343 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import modin.pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
upscaler2x = StableDiffusionLatentUpscalePipeline.from_pretrained(model_2x, torch_dtype=torch.float16) if torch.cuda.is_available() else StableDiffusionLatentUpscalePipeline.from_pretrained(model_2x)
|
15 |
-
upscaler4x = StableDiffusionUpscalePipeline.from_pretrained(model_4x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionUpscalePipeline.from_pretrained(model_4x)
|
16 |
-
upscaler2x = upscaler2x.to(device)
|
17 |
-
upscaler4x = upscaler4x.to(device)
|
18 |
-
|
19 |
-
#define interface
|
20 |
-
|
21 |
-
def upscale(raw_img, model, prompt, negative_prompt, scale, steps, Seed):
|
22 |
-
generator = torch.manual_seed(Seed)
|
23 |
-
raw_img = Image.open(raw_img).convert("RGB")
|
24 |
-
if model == "Upscaler 4x":
|
25 |
-
low_res_img = raw_img.resize((128, 128))
|
26 |
-
upscaled_image = upscaler4x(prompt=prompt, negative_prompt=negative_prompt, image=low_res_img, guidance_scale=scale, num_inference_steps=steps).images[0]
|
27 |
-
else:
|
28 |
-
upscaled_image = upscaler2x(prompt=prompt, negative_prompt=negative_prompt, image=raw_img, guidance_scale=scale, num_inference_steps=steps).images[0]
|
29 |
-
return upscaled_image
|
30 |
-
|
31 |
-
#launch interface
|
32 |
-
|
33 |
-
gr.Interface(fn=upscale, inputs=[
|
34 |
-
gr.Image(type="filepath", label='Lower Resolution Image'),
|
35 |
-
gr.Radio(['Upscaler 2x','Upscaler 4x'], label="Models"),
|
36 |
-
gr.Textbox(label="Optional: Enter a Prompt to Guide the AI's Enhancement, this can have an Img2Img Effect"),
|
37 |
-
gr.Textbox(label='Experimental: Influence What you do not want the AI to Enhance. Such as Blur, Smudges, or Pixels'),
|
38 |
-
gr.Slider(1, 15, 1, step=1, label='Guidance Scale: How much the AI influences the Upscaling.'),
|
39 |
-
gr.Slider(5, 50, 5, step=1, label='Number of Iterations'),
|
40 |
-
gr.Slider(minimum=1, maximum=999999999999999999, randomize=True, step=1)],
|
41 |
-
outputs=gr.Image(type="filepath", label = 'Upscaled Image'),
|
42 |
-
title='SD Upscaler',
|
43 |
-
description='2x Latent Upscaler using SD 2.0 And 4x Upscaler using SD 2.1. This version runs on CPU or GPU and is currently running on a T4 GPU. For 4x Upscaling use images lower than 512x512, ideally 128x128 or smaller for 512x512 output. For 2x Upscaling use up to 512x512 images for 1024x1024 output.<br><br><b>Notice: Largest Accepted Resolution is 512x512',
|
44 |
-
article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(max_threads=True, debug=True)
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
|
8 |
+
# also released under the MIT license.
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
from concurrent.futures import ProcessPoolExecutor
|
12 |
+
import os
|
13 |
+
import subprocess as sp
|
14 |
+
from tempfile import NamedTemporaryFile
|
15 |
+
import time
|
16 |
+
import warnings
|
17 |
import modin.pandas as pd
|
18 |
+
import torch
|
19 |
+
import gradio as gr
|
20 |
+
|
21 |
+
from audiocraft.data.audio_utils import convert_audio
|
22 |
+
from audiocraft.data.audio import audio_write
|
23 |
+
from audiocraft.models import MusicGen
|
24 |
+
|
25 |
+
|
26 |
+
MODEL = None # Last used model
|
27 |
+
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
|
28 |
+
MAX_BATCH_SIZE = 6
|
29 |
+
BATCHED_DURATION = 15
|
30 |
+
INTERRUPTING = True
|
31 |
+
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
|
32 |
+
_old_call = sp.call
|
33 |
+
|
34 |
+
|
35 |
+
def _call_nostderr(*args, **kwargs):
|
36 |
+
# Avoid ffmpeg vomitting on the logs.
|
37 |
+
kwargs['stderr'] = sp.DEVNULL
|
38 |
+
kwargs['stdout'] = sp.DEVNULL
|
39 |
+
_old_call(*args, **kwargs)
|
40 |
+
|
41 |
+
|
42 |
+
sp.call = _call_nostderr
|
43 |
+
# Preallocating the pool of processes.
|
44 |
+
pool = ProcessPoolExecutor(3)
|
45 |
+
pool.__enter__()
|
46 |
+
|
47 |
+
|
48 |
+
def interrupt():
|
49 |
+
global INTERRUPTING
|
50 |
+
INTERRUPTING = True
|
51 |
+
|
52 |
+
|
53 |
+
def make_waveform(*args, **kwargs):
|
54 |
+
# Further remove some warnings.
|
55 |
+
be = time.time()
|
56 |
+
with warnings.catch_warnings():
|
57 |
+
warnings.simplefilter('ignore')
|
58 |
+
out = gr.make_waveform(*args, **kwargs)
|
59 |
+
print("Make a video took", time.time() - be)
|
60 |
+
return out
|
61 |
+
|
62 |
+
|
63 |
+
def load_model(version='melody'):
|
64 |
+
global MODEL
|
65 |
+
print("Loading model", version)
|
66 |
+
if MODEL is None or MODEL.name != version:
|
67 |
+
MODEL = MusicGen.get_pretrained(version)
|
68 |
+
|
69 |
+
|
70 |
+
def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs):
|
71 |
+
MODEL.set_generation_params(duration=duration, **gen_kwargs)
|
72 |
+
print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
|
73 |
+
be = time.time()
|
74 |
+
processed_melodies = []
|
75 |
+
target_sr = 32000
|
76 |
+
target_ac = 1
|
77 |
+
for melody in melodies:
|
78 |
+
if melody is None:
|
79 |
+
processed_melodies.append(None)
|
80 |
+
else:
|
81 |
+
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
|
82 |
+
if melody.dim() == 1:
|
83 |
+
melody = melody[None]
|
84 |
+
melody = melody[..., :int(sr * duration)]
|
85 |
+
melody = convert_audio(melody, sr, target_sr, target_ac)
|
86 |
+
processed_melodies.append(melody)
|
87 |
+
|
88 |
+
if any(m is not None for m in processed_melodies):
|
89 |
+
outputs = MODEL.generate_with_chroma(
|
90 |
+
descriptions=texts,
|
91 |
+
melody_wavs=processed_melodies,
|
92 |
+
melody_sample_rate=target_sr,
|
93 |
+
progress=progress,
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
outputs = MODEL.generate(texts, progress=progress)
|
97 |
+
|
98 |
+
outputs = outputs.detach().cpu().float()
|
99 |
+
out_files = []
|
100 |
+
for output in outputs:
|
101 |
+
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
102 |
+
audio_write(
|
103 |
+
file.name, output, MODEL.sample_rate, strategy="loudness",
|
104 |
+
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
|
105 |
+
out_files.append(pool.submit(make_waveform, file.name))
|
106 |
+
res = [out_file.result() for out_file in out_files]
|
107 |
+
print("batch finished", len(texts), time.time() - be)
|
108 |
+
return res
|
109 |
+
|
110 |
+
|
111 |
+
def predict_batched(texts, melodies):
|
112 |
+
max_text_length = 512
|
113 |
+
texts = [text[:max_text_length] for text in texts]
|
114 |
+
load_model('melody')
|
115 |
+
res = _do_predictions(texts, melodies, BATCHED_DURATION)
|
116 |
+
return [res]
|
117 |
+
|
118 |
+
|
119 |
+
def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
|
120 |
+
global INTERRUPTING
|
121 |
+
INTERRUPTING = False
|
122 |
+
topk = int(topk)
|
123 |
+
load_model(model)
|
124 |
+
|
125 |
+
def _progress(generated, to_generate):
|
126 |
+
progress((generated, to_generate))
|
127 |
+
if INTERRUPTING:
|
128 |
+
raise gr.Error("Interrupted.")
|
129 |
+
MODEL.set_custom_progress_callback(_progress)
|
130 |
+
|
131 |
+
outs = _do_predictions(
|
132 |
+
[text], [melody], duration, progress=True,
|
133 |
+
top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
|
134 |
+
return outs[0]
|
135 |
+
|
136 |
+
|
137 |
+
def ui_full(launch_kwargs):
|
138 |
+
with gr.Blocks() as interface:
|
139 |
+
gr.Markdown(
|
140 |
+
"""
|
141 |
+
# MusicGen
|
142 |
+
This is a demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
|
143 |
+
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
|
144 |
+
"""
|
145 |
+
)
|
146 |
+
with gr.Row():
|
147 |
+
with gr.Column():
|
148 |
+
with gr.Row():
|
149 |
+
text = gr.Text(label="Input Text", interactive=True)
|
150 |
+
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True)
|
151 |
+
with gr.Row():
|
152 |
+
submit = gr.Button("Submit")
|
153 |
+
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
|
154 |
+
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
|
155 |
+
with gr.Row():
|
156 |
+
model = gr.Radio(["melody", "large", "medium", "small"], label="Model", value="melody", interactive=True)
|
157 |
+
with gr.Row():
|
158 |
+
duration = gr.Slider(minimum=1, maximum=120, value=16, label="Duration", interactive=True)
|
159 |
+
with gr.Row():
|
160 |
+
topk = gr.Number(label="Top-k", value=250, interactive=True)
|
161 |
+
topp = gr.Number(label="Top-p", value=0, interactive=True)
|
162 |
+
temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
|
163 |
+
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
|
164 |
+
with gr.Column():
|
165 |
+
output = gr.Video(label="Generated Music")
|
166 |
+
submit.click(predict_full, inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef], outputs=[output])
|
167 |
+
gr.Examples(
|
168 |
+
fn=predict_full,
|
169 |
+
examples=[
|
170 |
+
[
|
171 |
+
"An 80s driving pop song with heavy drums and synth pads in the background",
|
172 |
+
"./assets/bach.mp3",
|
173 |
+
"melody"
|
174 |
+
],
|
175 |
+
[
|
176 |
+
"A cheerful country song with acoustic guitars",
|
177 |
+
"./assets/bolero_ravel.mp3",
|
178 |
+
"melody"
|
179 |
+
],
|
180 |
+
[
|
181 |
+
"90s rock song with electric guitar and heavy drums",
|
182 |
+
None,
|
183 |
+
"medium"
|
184 |
+
],
|
185 |
+
[
|
186 |
+
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
|
187 |
+
"./assets/bach.mp3",
|
188 |
+
"melody"
|
189 |
+
],
|
190 |
+
[
|
191 |
+
"lofi slow bpm electro chill with organic samples",
|
192 |
+
None,
|
193 |
+
"medium",
|
194 |
+
],
|
195 |
+
],
|
196 |
+
inputs=[text, melody, model],
|
197 |
+
outputs=[output]
|
198 |
+
)
|
199 |
+
gr.Markdown(
|
200 |
+
"""
|
201 |
+
### More details
|
202 |
+
|
203 |
+
The model will generate a short music extract based on the description you provided.
|
204 |
+
The model can generate up to 30 seconds of audio in one pass. It is now possible
|
205 |
+
to extend the generation by feeding back the end of the previous chunk of audio.
|
206 |
+
This can take a long time, and the model might lose consistency. The model might also
|
207 |
+
decide at arbitrary positions that the song ends.
|
208 |
+
|
209 |
+
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min). An overlap of 12 seconds
|
210 |
+
is kept with the previously generated chunk, and 18 "new" seconds are generated each time.
|
211 |
+
|
212 |
+
We present 4 model variations:
|
213 |
+
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
|
214 |
+
2. Small -- a 300M transformer decoder conditioned on text only.
|
215 |
+
3. Medium -- a 1.5B transformer decoder conditioned on text only.
|
216 |
+
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)
|
217 |
+
|
218 |
+
When using `melody`, you can optionaly provide a reference audio from
|
219 |
+
which a broad melody will be extracted. The model will then try to follow both the description and melody provided.
|
220 |
+
|
221 |
+
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
222 |
+
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
223 |
+
for more details.
|
224 |
+
"""
|
225 |
+
)
|
226 |
+
|
227 |
+
interface.queue(max_size=2).launch(**launch_kwargs)
|
228 |
+
|
229 |
+
|
230 |
+
def ui_batched(launch_kwargs):
|
231 |
+
with gr.Blocks() as demo:
|
232 |
+
gr.Markdown(
|
233 |
+
"""
|
234 |
+
# MusicGen
|
235 |
+
|
236 |
+
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
|
237 |
+
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
|
238 |
+
<br/>
|
239 |
+
<a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
|
240 |
+
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
241 |
+
for longer sequences, more control and no queue.</p>
|
242 |
+
"""
|
243 |
+
)
|
244 |
+
with gr.Row():
|
245 |
+
with gr.Column():
|
246 |
+
with gr.Row():
|
247 |
+
text = gr.Text(label="Describe your music", lines=2, interactive=True)
|
248 |
+
melody = gr.Audio(source="upload", type="numpy", label="Condition on a melody (optional)", interactive=True)
|
249 |
+
with gr.Row():
|
250 |
+
submit = gr.Button("Generate")
|
251 |
+
with gr.Column():
|
252 |
+
output = gr.Video(label="Generated Music")
|
253 |
+
submit.click(predict_batched, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE)
|
254 |
+
gr.Examples(
|
255 |
+
fn=predict_batched,
|
256 |
+
examples=[
|
257 |
+
[
|
258 |
+
"An 80s driving pop song with heavy drums and synth pads in the background",
|
259 |
+
"./assets/bach.mp3",
|
260 |
+
],
|
261 |
+
[
|
262 |
+
"A cheerful country song with acoustic guitars",
|
263 |
+
"./assets/bolero_ravel.mp3",
|
264 |
+
],
|
265 |
+
[
|
266 |
+
"90s rock song with electric guitar and heavy drums",
|
267 |
+
None,
|
268 |
+
],
|
269 |
+
[
|
270 |
+
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
|
271 |
+
"./assets/bach.mp3",
|
272 |
+
],
|
273 |
+
[
|
274 |
+
"lofi slow bpm electro chill with organic samples",
|
275 |
+
None,
|
276 |
+
],
|
277 |
+
],
|
278 |
+
inputs=[text, melody],
|
279 |
+
outputs=[output]
|
280 |
+
)
|
281 |
+
gr.Markdown("""
|
282 |
+
### More details
|
283 |
+
|
284 |
+
The model will generate 12 seconds of audio based on the description you provided.
|
285 |
+
You can optionaly provide a reference audio from which a broad melody will be extracted.
|
286 |
+
The model will then try to follow both the description and melody provided.
|
287 |
+
All samples are generated with the `melody` model.
|
288 |
+
|
289 |
+
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
290 |
+
|
291 |
+
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
292 |
+
for more details.
|
293 |
+
""")
|
294 |
+
|
295 |
+
demo.queue(max_size=3).launch(**launch_kwargs)
|
296 |
+
|
297 |
+
|
298 |
+
if __name__ == "__main__":
|
299 |
+
parser = argparse.ArgumentParser()
|
300 |
+
parser.add_argument(
|
301 |
+
'--listen',
|
302 |
+
type=str,
|
303 |
+
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
|
304 |
+
help='IP to listen on for connections to Gradio',
|
305 |
+
)
|
306 |
+
parser.add_argument(
|
307 |
+
'--username', type=str, default='', help='Username for authentication'
|
308 |
+
)
|
309 |
+
parser.add_argument(
|
310 |
+
'--password', type=str, default='', help='Password for authentication'
|
311 |
+
)
|
312 |
+
parser.add_argument(
|
313 |
+
'--server_port',
|
314 |
+
type=int,
|
315 |
+
default=0,
|
316 |
+
help='Port to run the server listener on',
|
317 |
+
)
|
318 |
+
parser.add_argument(
|
319 |
+
'--inbrowser', action='store_true', help='Open in browser'
|
320 |
+
)
|
321 |
+
parser.add_argument(
|
322 |
+
'--share', action='store_true', help='Share the gradio UI'
|
323 |
+
)
|
324 |
+
|
325 |
+
args = parser.parse_args()
|
326 |
+
|
327 |
+
launch_kwargs = {}
|
328 |
+
launch_kwargs['server_name'] = args.listen
|
329 |
+
|
330 |
+
if args.username and args.password:
|
331 |
+
launch_kwargs['auth'] = (args.username, args.password)
|
332 |
+
if args.server_port:
|
333 |
+
launch_kwargs['server_port'] = args.server_port
|
334 |
+
if args.inbrowser:
|
335 |
+
launch_kwargs['inbrowser'] = args.inbrowser
|
336 |
+
if args.share:
|
337 |
+
launch_kwargs['share'] = args.share
|
338 |
|
339 |
+
# Show the interface
|
340 |
+
if IS_BATCHED:
|
341 |
+
ui_batched(launch_kwargs)
|
342 |
+
else:
|
343 |
+
ui_full(launch_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|