Manjushri commited on
Commit
6056cbd
·
1 Parent(s): e4473cb

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -408
app.py DELETED
@@ -1,408 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
-
4
- # This source code is licensed under the license found in the
5
- # LICENSE file in the root directory of this source tree.
6
-
7
- # Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
8
- # also released under the MIT license.
9
-
10
- import argparse
11
- from concurrent.futures import ProcessPoolExecutor
12
- import os
13
- from pathlib import Path
14
- import subprocess as sp
15
- from tempfile import NamedTemporaryFile
16
- import time
17
- import typing as tp
18
- import warnings
19
- #import modin.pandas as pd
20
- import torch
21
- import gradio as gr
22
-
23
- from audiocraft.data.audio_utils import convert_audio
24
- from audiocraft.data.audio import audio_write
25
- from audiocraft.models import MusicGen
26
-
27
-
28
- MODEL = None # Last used model
29
- IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
30
- MAX_BATCH_SIZE = 6
31
- BATCHED_DURATION = 15
32
- INTERRUPTING = False
33
- # We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
34
- _old_call = sp.call
35
-
36
-
37
- def _call_nostderr(*args, **kwargs):
38
- # Avoid ffmpeg vomitting on the logs.
39
- kwargs['stderr'] = sp.DEVNULL
40
- kwargs['stdout'] = sp.DEVNULL
41
- _old_call(*args, **kwargs)
42
-
43
-
44
- sp.call = _call_nostderr
45
- # Preallocating the pool of processes.
46
- pool = ProcessPoolExecutor(3)
47
- pool.__enter__()
48
-
49
-
50
- def interrupt():
51
- global INTERRUPTING
52
- INTERRUPTING = False
53
-
54
-
55
- class FileCleaner:
56
- def __init__(self, file_lifetime: float = 3600):
57
- self.file_lifetime = file_lifetime
58
- self.files = []
59
-
60
- def add(self, path: tp.Union[str, Path]):
61
- self._cleanup()
62
- self.files.append((time.time(), Path(path)))
63
-
64
- def _cleanup(self):
65
- now = time.time()
66
- for time_added, path in list(self.files):
67
- if now - time_added > self.file_lifetime:
68
- if path.exists():
69
- path.unlink()
70
- self.files.pop(0)
71
- else:
72
- break
73
-
74
-
75
- file_cleaner = FileCleaner()
76
-
77
-
78
- def make_waveform(*args, **kwargs):
79
- # Further remove some warnings.
80
- be = time.time()
81
- with warnings.catch_warnings():
82
- warnings.simplefilter('ignore')
83
- out = gr.make_waveform(*args, **kwargs)
84
- print("Make a video took", time.time() - be)
85
- return out
86
-
87
-
88
- def load_model(version='melody'):
89
- global MODEL
90
- print("Loading model", version)
91
- if MODEL is None or MODEL.name != version:
92
- MODEL = MusicGen.get_pretrained(version)
93
-
94
-
95
- def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs):
96
- MODEL.set_generation_params(duration=duration, **gen_kwargs)
97
- print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
98
- be = time.time()
99
- processed_melodies = []
100
- target_sr = 32000
101
- target_ac = 1
102
- for melody in melodies:
103
- if melody is None:
104
- processed_melodies.append(None)
105
- else:
106
- sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
107
- if melody.dim() == 1:
108
- melody = melody[None]
109
- melody = melody[..., :int(sr * duration)]
110
- melody = convert_audio(melody, sr, target_sr, target_ac)
111
- processed_melodies.append(melody)
112
-
113
- if any(m is not None for m in processed_melodies):
114
- outputs = MODEL.generate_with_chroma(
115
- descriptions=texts,
116
- melody_wavs=processed_melodies,
117
- melody_sample_rate=target_sr,
118
- progress=progress,
119
- )
120
- else:
121
- outputs = MODEL.generate(texts, progress=progress)
122
-
123
- outputs = outputs.detach().cpu().float()
124
- out_files = []
125
- for output in outputs:
126
- with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
127
- audio_write(
128
- file.name, output, MODEL.sample_rate, strategy="loudness",
129
- loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
130
- out_files.append(pool.submit(make_waveform, file.name))
131
- file_cleaner.add(file.name)
132
- res = [out_file.result() for out_file in out_files]
133
- for file in res:
134
- file_cleaner.add(file)
135
- print("batch finished", len(texts), time.time() - be)
136
- print("Tempfiles currently stored: ", len(file_cleaner.files))
137
- return res
138
-
139
-
140
- def predict_batched(texts, melodies):
141
- max_text_length = 512
142
- texts = [text[:max_text_length] for text in texts]
143
- load_model('melody')
144
- res = _do_predictions(texts, melodies, BATCHED_DURATION)
145
- return [res]
146
-
147
-
148
- def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
149
- global INTERRUPTING
150
- INTERRUPTING = False
151
- if temperature < 0:
152
- raise gr.Error("Temperature must be >= 0.")
153
- if topk < 0:
154
- raise gr.Error("Topk must be non-negative.")
155
- if topp < 0:
156
- raise gr.Error("Topp must be non-negative.")
157
-
158
- topk = int(topk)
159
- load_model(model)
160
-
161
- def _progress(generated, to_generate):
162
- progress((generated, to_generate))
163
- if INTERRUPTING:
164
- raise gr.Error("Interrupted.")
165
- MODEL.set_custom_progress_callback(_progress)
166
-
167
- outs = _do_predictions(
168
- [text], [melody], duration, progress=True,
169
- top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
170
- return outs[0]
171
-
172
-
173
- def toggle_audio_src(choice):
174
- if choice == "mic":
175
- return gr.update(source="microphone", value=None, label="Microphone")
176
- else:
177
- return gr.update(source="upload", value=None, label="File")
178
-
179
-
180
- def ui_full(launch_kwargs):
181
- with gr.Blocks() as interface:
182
- gr.Markdown(
183
- """
184
- # MusicGen
185
- This is a demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
186
- a simple and controllable model for music generation
187
- presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
188
- """
189
- )
190
- with gr.Row():
191
- with gr.Column():
192
- with gr.Row():
193
- text = gr.Text(label="Input Text", interactive=True)
194
- with gr.Column():
195
- radio = gr.Radio(["file", "mic"], value="file",
196
- label="Condition on a melody (optional) File or Mic")
197
- melody = gr.Audio(source="upload", type="numpy", label="File",
198
- interactive=True, elem_id="melody-input")
199
- with gr.Row():
200
- submit = gr.Button("Submit")
201
- # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
202
- #_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
203
- with gr.Row():
204
- model = gr.Radio(["melody", "medium", "small", "large"],
205
- label="Model", value="melody", interactive=True)
206
- with gr.Row():
207
- duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True)
208
- with gr.Row():
209
- topk = gr.Number(label="Top-k", value=250, interactive=True)
210
- topp = gr.Number(label="Top-p", value=0, interactive=True)
211
- temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
212
- cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
213
- with gr.Column():
214
- output = gr.Video(label="Generated Music")
215
- submit.click(predict_full,
216
- inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef],
217
- outputs=[output])
218
- radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
219
- gr.Examples(
220
- fn=predict_full,
221
- examples=[
222
- [
223
- "An 80s driving pop song with heavy drums and synth pads in the background",
224
- "./bach.mp3",
225
- "melody"
226
- ],
227
- [
228
- "A cheerful country song with acoustic guitars",
229
- "./bolero_ravel.mp3",
230
- "melody"
231
- ],
232
- [
233
- "90s rock song with electric guitar and heavy drums",
234
- None,
235
- "medium"
236
- ],
237
- [
238
- "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
239
- "./bach.mp3",
240
- "melody"
241
- ],
242
- [
243
- "lofi slow bpm electro chill with organic samples",
244
- None,
245
- "medium",
246
- ],
247
- ],
248
- inputs=[text, melody, model],
249
- outputs=[output]
250
- )
251
- gr.Markdown(
252
- """
253
- ### More details
254
-
255
- The model will generate a short music extract based on the description you provided.
256
- The model can generate up to 30 seconds of audio in one pass. It is now possible
257
- to extend the generation by feeding back the end of the previous chunk of audio.
258
- This can take a long time, and the model might lose consistency. The model might also
259
- decide at arbitrary positions that the song ends.
260
-
261
- **WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
262
- An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds
263
- are generated each time.
264
-
265
- We present 4 model variations:
266
- 1. Melody -- a music generation model capable of generating music condition
267
- on text and melody inputs. **Note**, you can also use text only.
268
- 2. Small -- a 300M transformer decoder conditioned on text only.
269
- 3. Medium -- a 1.5B transformer decoder conditioned on text only.
270
- 4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)
271
-
272
- When using `melody`, ou can optionaly provide a reference audio from
273
- which a broad melody will be extracted. The model will then try to follow both
274
- the description and melody provided.
275
-
276
- You can also use your own GPU or a Google Colab by following the instructions on our repo.
277
- See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
278
- for more details.
279
- """
280
- )
281
-
282
- interface.queue().launch(**launch_kwargs)
283
-
284
-
285
- def ui_batched(launch_kwargs):
286
- with gr.Blocks() as demo:
287
- gr.Markdown(
288
- """
289
- # MusicGen
290
-
291
- This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
292
- a simple and controllable model for music generation
293
- presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
294
- <br/>
295
- <a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true"
296
- style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
297
- <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
298
- src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
299
- for longer sequences, more control and no queue.</p>
300
- """
301
- )
302
- with gr.Row():
303
- with gr.Column():
304
- with gr.Row():
305
- text = gr.Text(label="Describe your music", lines=2, interactive=True)
306
- with gr.Column():
307
- radio = gr.Radio(["file", "mic"], value="file",
308
- label="Condition on a melody (optional) File or Mic")
309
- melody = gr.Audio(source="upload", type="numpy", label="File",
310
- interactive=True, elem_id="melody-input")
311
- with gr.Row():
312
- submit = gr.Button("Generate")
313
- with gr.Column():
314
- output = gr.Video(label="Generated Music")
315
- submit.click(predict_batched, inputs=[text, melody],
316
- outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE)
317
- radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
318
- gr.Examples(
319
- fn=predict_batched,
320
- examples=[
321
- [
322
- "An 80s driving pop song with heavy drums and synth pads in the background",
323
- "./assets/bach.mp3",
324
- ],
325
- [
326
- "A cheerful country song with acoustic guitars",
327
- "./assets/bolero_ravel.mp3",
328
- ],
329
- [
330
- "90s rock song with electric guitar and heavy drums",
331
- None,
332
- ],
333
- [
334
- "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
335
- "./assets/bach.mp3",
336
- ],
337
- [
338
- "lofi slow bpm electro chill with organic samples",
339
- None,
340
- ],
341
- ],
342
- inputs=[text, melody],
343
- outputs=[output]
344
- )
345
- gr.Markdown("""
346
- ### More details
347
-
348
- The model will generate 12 seconds of audio based on the description you provided.
349
- You can optionaly provide a reference audio from which a broad melody will be extracted.
350
- The model will then try to follow both the description and melody provided.
351
- All samples are generated with the `melody` model.
352
-
353
- You can also use your own GPU or a Google Colab by following the instructions on our repo.
354
-
355
- See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
356
- for more details.
357
- """)
358
-
359
- demo.queue(max_size=8 * 4).launch(**launch_kwargs)
360
-
361
-
362
- if __name__ == "__main__":
363
- parser = argparse.ArgumentParser()
364
- parser.add_argument(
365
- '--listen',
366
- type=str,
367
- default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
368
- help='IP to listen on for connections to Gradio',
369
- )
370
- parser.add_argument(
371
- '--username', type=str, default='', help='Username for authentication'
372
- )
373
- parser.add_argument(
374
- '--password', type=str, default='', help='Password for authentication'
375
- )
376
- parser.add_argument(
377
- '--server_port',
378
- type=int,
379
- default=0,
380
- help='Port to run the server listener on',
381
- )
382
- parser.add_argument(
383
- '--inbrowser', action='store_true', help='Open in browser'
384
- )
385
- parser.add_argument(
386
- '--share', action='store_true', help='Share the gradio UI'
387
- )
388
-
389
- args = parser.parse_args()
390
-
391
- launch_kwargs = {}
392
- launch_kwargs['server_name'] = args.listen
393
-
394
- if args.username and args.password:
395
- launch_kwargs['auth'] = (args.username, args.password)
396
- if args.server_port:
397
- launch_kwargs['server_port'] = args.server_port
398
- if args.inbrowser:
399
- launch_kwargs['inbrowser'] = args.inbrowser
400
- if args.share:
401
- launch_kwargs['share'] = args.share
402
-
403
- # Show the interface
404
- if IS_BATCHED:
405
- ui_batched(launch_kwargs)
406
- else:
407
- ui_full(launch_kwargs)
408
-