magicfixeseverything commited on
Commit
cf6ac90
·
1 Parent(s): 0826f53

Upload 2 files

Browse files
Files changed (2) hide show
  1. Instructions.txt +27 -16
  2. app.py +796 -227
Instructions.txt CHANGED
@@ -221,22 +221,28 @@ cd C:\Diffusers && .venv\Scripts\activate.bat && pip install diffusers transform
221
  A whole bunch of things, what might be 100 packages or more, will download
222
  and install, including any packages needed to run these.
223
 
224
- When complete, then install this version of Gradio. A later version fixes a
225
- bug that is needed for the menus to work properly.
 
226
 
227
- cd C:\Diffusers && .venv\Scripts\activate.bat && pip install https://gradio-builds.s3.amazonaws.com/fce80ac804dce1b1b22a8b5c575a35cf0356b82a/gradio-4.8.0-py3-none-any.whl
 
 
 
 
 
 
 
 
 
 
228
 
229
  The gallery feature doesn't allow images to be downloaded using the download
230
  button in the current version above. Hopefully that will work in a later
231
  version. (so eventually you will need to try another Gradio version)
232
 
233
- That command is described here:
234
-
235
- https://www.gradio.app/main/docs/interface
236
-
237
  When a later version is eventually called, "gradio" will eventually be added
238
- to the previous command rather than having to specify the version number and
239
- where to install from.
240
 
241
  When complete, move on to the next step.
242
 
@@ -404,11 +410,16 @@ cd C:\Diffusers && .venv\Scripts\activate.bat && py .venv\ai_image_creation\app.
404
  Step 13 (Important):
405
 
406
  I feel this is a very important step. After you have created model data for
407
- each base model, model data will then have been downloaded. This could be 20
408
- gigabytes or more of data. I strongly recommend that you then disable the
409
- script from downloading updates to the model data. It will not automatically
410
- delete old data. If you didn't manually go through and delete the older
411
- data, eventually the model data would use all of the space on your computer.
 
 
 
 
 
412
 
413
  Once you have downloaded the model data for each model, you can disable
414
  updating by doing the following in a command prompt:
@@ -434,10 +445,10 @@ setx HF_HUB_OFFLINE "0" && REG DELETE HKEY_CURRENT_USER\Environment /v HF_HUB_OF
434
  effect, once you restart the script, to be able to download model data
435
  again.
436
 
437
- You can read about environment variables here at HuggingFace:
438
  https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables#hfhuboffline
439
 
440
- In regard to HuggingFace caching things, you can learn more on this page:
441
  https://huggingface.co/docs/huggingface_hub/how-to-cachehttps://huggingface.co/docs/huggingface_hub/how-to-cache#limitations
442
 
443
  This is just my preferred way of handling it.
 
221
  A whole bunch of things, what might be 100 packages or more, will download
222
  and install, including any packages needed to run these.
223
 
224
+ When complete, you might need to install a later version of Gradio. A later
225
+ version fixes a bug that is needed for the menus to work properly. This
226
+ worked for me:
227
 
228
+ cd C:\Diffusers && .venv\Scripts\activate.bat && pip install https://gradio-builds.s3.amazonaws.com/6b1401c514c2ec012b0a50c72a6ec81cb673bf1d/gradio-4.8.0-py3-none-any.whl
229
+
230
+ That was found here:
231
+
232
+ https://www.gradio.app/docs/blocks
233
+
234
+ After selecting "main" from the version number dropdown in the left column.
235
+ The link changes. If you don't want to doit that way, just do this instead
236
+ to see if the dropdown menus work:
237
+
238
+ cd C:\Diffusers && .venv\Scripts\activate.bat && pip install gradio
239
 
240
  The gallery feature doesn't allow images to be downloaded using the download
241
  button in the current version above. Hopefully that will work in a later
242
  version. (so eventually you will need to try another Gradio version)
243
 
 
 
 
 
244
  When a later version is eventually called, "gradio" will eventually be added
245
+ to the original command rather than having to specify it separately.
 
246
 
247
  When complete, move on to the next step.
248
 
 
410
  Step 13 (Important):
411
 
412
  I feel this is a very important step. After you have created model data for
413
+ each base model, as well as have used the refiner and upscaler, data will
414
+ then have been downloaded. This could be 30 gigabytes or more of data. I
415
+ strongly recommend that you then disable the script from downloading updates
416
+ to the model data. It will not automatically delete old data. If you didn't
417
+ manually go through and delete the older data, eventually the model data
418
+ would use all of the space on your computer.
419
+
420
+ There is something that is very important to note however. If you do this,
421
+ other installations that use Hugging Face for example, like Automatic1111,
422
+ will not be able to download data and will not work properly.
423
 
424
  Once you have downloaded the model data for each model, you can disable
425
  updating by doing the following in a command prompt:
 
445
  effect, once you restart the script, to be able to download model data
446
  again.
447
 
448
+ You can read about environment variables here at Hugging Face:
449
  https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables#hfhuboffline
450
 
451
+ In regard to Hugging Face caching things, you can learn more on this page:
452
  https://huggingface.co/docs/huggingface_hub/how-to-cachehttps://huggingface.co/docs/huggingface_hub/how-to-cache#limitations
453
 
454
  This is just my preferred way of handling it.
app.py CHANGED
@@ -4,6 +4,7 @@ import torch
4
  import modin.pandas as pd
5
  from PIL import Image
6
  from diffusers import DiffusionPipeline
 
7
 
8
  ##########
9
 
@@ -66,11 +67,11 @@ main_dir = "C:/Diffusers"
66
  ####################
67
 
68
  #
69
- # Use Custom HuggingFace Cache Directory
70
  #
71
  # The folder where model data is stored can get huge. I choose to add it
72
  # to a place where I am more likely to notice it more often. If you use
73
- # other HuggingFace things however, and will use these models in those
74
  # other things, then you might want to consider not having this here as
75
  # it would duplicate the model data.
76
  #
@@ -171,7 +172,9 @@ make_seed_selection_a_textbox = 0
171
  #
172
  # Include Close Command Prompt / Cancel Button
173
  #
174
- # This doesn't work well at all. It just closes the command prompt.
 
 
175
  #
176
 
177
  enable_close_command_prompt_button = 0
@@ -229,6 +232,36 @@ show_download_button_for_gallery = 0
229
 
230
  ####################
231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
  #
233
  # Up Next Is Various Configuration Arrays and Objects
234
  #
@@ -341,6 +374,21 @@ model_configuration_force_refiner_object = {
341
  "sdxl_2023-09-05": 1
342
  }
343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
344
  ####################
345
 
346
  base_model_model_configuration_defaults_object = {
@@ -403,7 +451,7 @@ if device == "cpu":
403
 
404
  ####################
405
 
406
- default_prompt = ""
407
  default_negative_prompt = ""
408
 
409
  default_width = 768
@@ -414,7 +462,8 @@ default_guidance_scale_value = 7
414
  default_base_model_base_model_num_inference_steps = 50
415
  default_base_model_base_model_num_inference_steps_for_sdxl_turbo = 2
416
 
417
- default_seed_maximum = 999999999999999999
 
418
  default_seed_value = 876678173805928800
419
 
420
  # If you turn off the refiner it will not be available in the display unless
@@ -428,6 +477,14 @@ enable_upscaler = 1
428
  default_refiner_selected = 0
429
  default_upscaler_selected = 0
430
 
 
 
 
 
 
 
 
 
431
  # xFormers:
432
  #
433
  # https://huggingface.co/docs/diffusers/optimization/xformers
@@ -492,16 +549,11 @@ width_and_height_input_slider_steps = 8
492
 
493
 
494
 
495
- show_messages_in_command_prompt = 1
496
- show_messages_in_modal_on_page = 1
497
-
498
-
499
-
500
  opening_html = ""
501
 
502
  if device == "cpu":
503
 
504
- opening_html = "<span style=\"font-weight: bold; color: red;\">THIS APP IS EXCEPTIONALLY SLOW! THE REFINER CODE DOESN'T WORK RIGHT YET.</span><br/>This app is not running on a GPU. The first time it loads after the space is rebuilt it might take 10 minutes to generate a SDXL Turbo image. It may take two minutes after that point. For other models, it may take hours to create a single image!"
505
 
506
 
507
 
@@ -527,19 +579,6 @@ number_of_reserved_tokens = 2
527
 
528
 
529
 
530
-
531
-
532
-
533
-
534
- # This will eventually be a configuration option...
535
-
536
- # "pil" image
537
- # "latent" latent space
538
-
539
- which_output_type_before_refiner_and_upscaler = "latent"
540
-
541
-
542
-
543
  ###############################################################################
544
  ###############################################################################
545
  #
@@ -552,8 +591,20 @@ which_output_type_before_refiner_and_upscaler = "latent"
552
  ###############################################################################
553
  ###############################################################################
554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555
 
556
- import os
557
 
558
  try:
559
  if (str(os.uname()).find("magicfixeseverything") >= 0):
@@ -569,6 +620,13 @@ if script_being_run_on_hugging_face == 1:
569
  auto_save_imagery = 0
570
  show_messages_in_modal_on_page = 0
571
 
 
 
 
 
 
 
 
572
  ending_html = """
573
  If you would like to download this app to run offline on a Windows computer that has a NVIDIA graphics card, click <a href=\"https://huggingface.co/spaces/magicfixeseverything/ai_image_creation/resolve/main/ai_image_creation.zip\">here</a> to download it.
574
 
@@ -771,6 +829,20 @@ default_refiner_and_upscaler_status_text = refiner_and_upscaler_status_opening_h
771
 
772
 
773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774
  refiner_default_config_accordion_visible = True
775
 
776
  if (
@@ -783,8 +855,11 @@ if (
783
  refiner_default_config_accordion_open = False
784
 
785
  if (
786
- (is_default_config == 1) and
787
- (default_refiner_selected == 1)
 
 
 
788
  ):
789
 
790
  refiner_default_config_accordion_open = True
@@ -803,8 +878,11 @@ if (
803
  refiner_online_config_accordion_open = False
804
 
805
  if (
806
- (is_default_config != 1) and
807
- (default_refiner_selected == 1)
 
 
 
808
  ):
809
 
810
  refiner_online_config_accordion_open = True
@@ -827,7 +905,10 @@ if enable_refiner == 1:
827
 
828
  upscaler_accordion_open = False
829
 
830
- if default_upscaler_selected == 1:
 
 
 
831
 
832
  upscaler_accordion_open = True
833
 
@@ -874,16 +955,25 @@ if default_base_model == "sdxl_turbo":
874
 
875
 
876
 
877
- global pipe
878
- global refiner
879
- global upscaler
880
-
881
  last_model_configuration_name_value = ""
882
  last_refiner_selected = ""
883
  last_upscaler_selected = ""
884
 
885
 
886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887
  default_base_model_choices_array = []
888
 
889
  stored_model_configuration_names_object = {}
@@ -986,7 +1076,7 @@ def convert_seconds(
986
  def seed_not_valid(seed_num_str):
987
  try:
988
  seed_num = int(seed_num_str)
989
- if (seed_num > 0) and (seed_num < default_seed_maximum):
990
  return False
991
  else:
992
  return True
@@ -1125,6 +1215,238 @@ def update_prompt_info_from_gallery (
1125
 
1126
 
1127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128
  #####################
1129
  #
1130
  # Create Image Function
@@ -1145,9 +1467,11 @@ def create_image_function (
1145
  base_model_num_inference_steps_field_for_sdxl_turbo,
1146
  actual_seed,
1147
 
 
1148
  refining_selection_online_config_normal_field_value,
1149
  refining_selection_online_config_automatically_selected_field_value,
1150
 
 
1151
  refining_use_denoising_start_in_base_model_when_using_refiner_field_value,
1152
  refining_base_model_output_to_refiner_is_in_latent_space_field_value,
1153
 
@@ -1158,6 +1482,16 @@ def create_image_function (
1158
  upscaling_num_inference_steps
1159
  ):
1160
 
 
 
 
 
 
 
 
 
 
 
1161
  refining_selection_online_config_normal_field_value = numerical_bool(refining_selection_online_config_normal_field_value)
1162
  refining_selection_online_config_automatically_selected_field_value = numerical_bool(refining_selection_online_config_automatically_selected_field_value)
1163
 
@@ -1165,6 +1499,8 @@ def create_image_function (
1165
  refining_use_denoising_start_in_base_model_when_using_refiner_field_value = numerical_bool(refining_use_denoising_start_in_base_model_when_using_refiner_field_value)
1166
  refining_base_model_output_to_refiner_is_in_latent_space_field_value = numerical_bool(refining_base_model_output_to_refiner_is_in_latent_space_field_value)
1167
 
 
 
1168
  use_upscaler = numerical_bool(upscaling_selection_field_value)
1169
 
1170
 
@@ -1174,23 +1510,36 @@ def create_image_function (
1174
 
1175
 
1176
 
1177
- is_config_state = 0
 
 
 
 
 
1178
 
1179
  if model_configuration_name_value in default_model_configuration_object:
1180
 
1181
- is_config_state = 1
1182
 
1183
- use_refiner = 0
1184
 
1185
 
 
1186
 
1187
  if (
1188
  (
1189
- (is_config_state == 1) and
1190
- refining_selection_online_config_normal_field_value
1191
  ) or (
1192
- (is_config_state != 1) and
1193
- refining_selection_online_config_automatically_selected_field_value
 
 
 
 
 
 
 
 
1194
  )
1195
  ):
1196
 
@@ -1202,6 +1551,7 @@ def create_image_function (
1202
 
1203
  negative_prompt_text = ""
1204
  base_model_num_inference_steps = base_model_num_inference_steps_field_for_sdxl_turbo
 
1205
  guidance_scale = 0
1206
 
1207
 
@@ -1220,11 +1570,14 @@ def create_image_function (
1220
  (model_configuration_name_value != last_model_configuration_name_value)
1221
  ):
1222
 
1223
- show_message("Loading base model...")
 
1224
 
1225
  if (last_model_configuration_name_value != ""):
1226
 
1227
- del pipe
 
 
1228
 
1229
  if 'refiner' in globals():
1230
  del refiner
@@ -1309,7 +1662,8 @@ def create_image_function (
1309
 
1310
  if use_refiner == 1:
1311
 
1312
- show_message("Loading refiner...")
 
1313
 
1314
  refiner_kwargs = {
1315
  "use_safetensors": True
@@ -1325,7 +1679,7 @@ def create_image_function (
1325
  refiner_kwargs["cache_dir"] = hugging_face_cache_dir
1326
 
1327
  refiner = DiffusionPipeline.from_pretrained(
1328
- "stabilityai/stable-diffusion-xl-refiner-1.0",
1329
  **refiner_kwargs
1330
  )
1331
 
@@ -1360,7 +1714,8 @@ def create_image_function (
1360
 
1361
  if use_upscaler == 1:
1362
 
1363
- show_message("Loading upscaler...")
 
1364
 
1365
  upscaler_kwargs = {
1366
  "use_safetensors": True
@@ -1368,7 +1723,6 @@ def create_image_function (
1368
 
1369
  if device == "cuda":
1370
 
1371
- upscaler_kwargs["variant"] = "fp16"
1372
  upscaler_kwargs["torch_dtype"] = torch.float16
1373
 
1374
  if use_custom_hugging_face_cache_dir == 1:
@@ -1376,7 +1730,7 @@ def create_image_function (
1376
  upscaler_kwargs["cache_dir"] = hugging_face_cache_dir
1377
 
1378
  upscaler = DiffusionPipeline.from_pretrained(
1379
- "stabilityai/sd-x2-latent-upscaler",
1380
  **upscaler_kwargs
1381
  )
1382
 
@@ -1498,6 +1852,18 @@ def create_image_function (
1498
 
1499
 
1500
 
 
 
 
 
 
 
 
 
 
 
 
 
1501
  if model_configuration_name_value.find("default") < 0:
1502
 
1503
 
@@ -1543,43 +1909,90 @@ def create_image_function (
1543
 
1544
  upscaling_num_inference_steps = 5
1545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547
 
1548
- show_message("Initial image creation has begun.");
1549
- int_image = pipe(prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, num_inference_steps=steps, height=height, width=width, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images
1550
  if upscaling == 'Yes':
1551
- show_message("Refining has begun.");
1552
- image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, num_inference_steps=n_steps, denoising_start=high_noise_frac).images[0]
1553
- show_message("Upscaling has begun.");
 
 
 
1554
 
1555
  # Changed
1556
  #
1557
  # num_inference_steps=15
1558
  #
1559
 
1560
- upscaled = upscaler(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=upscaling_num_inference_steps, guidance_scale=0).images[0]
1561
- # torch.cuda.empty_cache()
 
 
 
 
 
 
1562
  if device == "cuda":
1563
  torch.cuda.empty_cache()
1564
 
1565
- # Changed
1566
- #
1567
- # return (image, upscaled)
1568
- #
1569
-
1570
  image_to_return = upscaled
1571
 
1572
  else:
1573
- show_message("Refining has begun.");
1574
- image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, num_inference_steps=n_steps ,denoising_start=high_noise_frac).images[0]
1575
- # torch.cuda.empty_cache()
1576
  if device == "cuda":
1577
  torch.cuda.empty_cache()
1578
 
1579
- # Changed
1580
- #
1581
- # return (image, image)
1582
- #
1583
  image_to_return = image
1584
 
1585
 
@@ -1595,13 +2008,66 @@ def create_image_function (
1595
 
1596
 
1597
  if upscale == "Yes":
1598
- show_message("Initial image creation has begun.");
1599
- int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
1600
- show_message("Refining has begun.");
1601
- image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602
  else:
1603
- show_message("Image creation has begun.");
1604
- image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605
 
1606
 
1607
 
@@ -1619,18 +2085,72 @@ def create_image_function (
1619
  #
1620
  #
1621
 
 
1622
 
 
1623
 
1624
- if use_refiner == 1:
1625
 
1626
- if use_upscaler == 1:
1627
 
1628
- show_message("Will create initial image, then refine and then upscale");
1629
 
1630
- if show_messages_in_command_prompt == 1:
 
 
1631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632
  print ("Initial image steps...");
1633
 
 
 
 
1634
  intitial_image = pipe(
1635
  prompt = prompt_text,
1636
  negative_prompt = negative_prompt_text,
@@ -1640,27 +2160,33 @@ def create_image_function (
1640
  guidance_scale = guidance_scale,
1641
  num_images_per_prompt = 1,
1642
  generator = generator,
1643
- #denoising_end = refining_denoise_start_for_default_config,
1644
- output_type = which_output_type_before_refiner_and_upscaler
 
1645
  ).images
1646
 
1647
  if show_messages_in_command_prompt == 1:
1648
-
1649
  print ("Refiner steps...");
1650
 
 
 
 
1651
  refined_image = refiner(
1652
  prompt = prompt_text,
1653
  negative_prompt = negative_prompt_text,
1654
  image = intitial_image,
1655
  num_inference_steps = base_model_num_inference_steps,
1656
- denoising_start = refining_denoise_start_for_default_config,
1657
- output_type = "pil"
 
1658
  ).images
1659
 
1660
  if show_messages_in_command_prompt == 1:
1661
-
1662
  print ("Upscaler steps...");
1663
 
 
 
 
1664
  upscaled_image = upscaler(
1665
  prompt = prompt_text,
1666
  negative_prompt = negative_prompt_text,
@@ -1676,58 +2202,40 @@ def create_image_function (
1676
 
1677
  else:
1678
 
1679
- show_message("Will create initial image and then refine");
1680
-
1681
  if show_messages_in_command_prompt == 1:
1682
-
1683
  print ("Initial image steps...");
1684
 
 
 
 
1685
  intitial_image = pipe(
1686
  prompt = prompt_text,
1687
  negative_prompt = negative_prompt_text,
1688
  width = image_width,
1689
  height = image_height,
1690
-
1691
-
1692
-
1693
  num_inference_steps = base_model_num_inference_steps,
1694
-
1695
-
1696
-
1697
- #testing
1698
- # num_inference_steps = 100,
1699
- # denoising_end = 0.75,
1700
-
1701
-
1702
-
1703
  guidance_scale = guidance_scale,
1704
  num_images_per_prompt = 1,
1705
  generator = generator,
1706
- output_type = which_output_type_before_refiner_and_upscaler
 
 
1707
  ).images
1708
 
1709
  if show_messages_in_command_prompt == 1:
1710
-
1711
  print ("Refiner steps...");
1712
 
 
 
 
1713
  refined_image = refiner(
1714
  prompt = prompt_text,
1715
  negative_prompt = negative_prompt_text,
1716
  image = intitial_image,
1717
-
1718
-
1719
-
1720
- #testing
1721
- # num_inference_steps = base_model_num_inference_steps,
1722
- # denoising_start = refining_denoise_start_for_default_config
1723
-
1724
-
1725
-
1726
- num_inference_steps = 60,
1727
- denoising_start = 0.25
1728
-
1729
-
1730
-
1731
  ).images[0]
1732
 
1733
  if device == "cuda":
@@ -1739,12 +2247,13 @@ def create_image_function (
1739
 
1740
  if use_upscaler == 1:
1741
 
1742
- show_message("Will create initial image and then upscale");
1743
-
1744
  if show_messages_in_command_prompt == 1:
1745
-
1746
  print ("Initial image steps...");
1747
 
 
 
 
1748
  intitial_image = pipe(
1749
  prompt = prompt_text,
1750
  negative_prompt = negative_prompt_text,
@@ -1754,14 +2263,16 @@ def create_image_function (
1754
  guidance_scale = guidance_scale,
1755
  num_images_per_prompt = 1,
1756
  generator = generator,
1757
- # output_type = which_output_type_before_refiner_and_upscaler
1758
- output_type = "pil"
1759
  ).images
1760
 
1761
  if show_messages_in_command_prompt == 1:
1762
-
1763
  print ("Upscaler steps...");
1764
 
 
 
 
1765
  upscaled_image = upscaler(
1766
  prompt = prompt_text,
1767
  negative_prompt = negative_prompt_text,
@@ -1777,12 +2288,13 @@ def create_image_function (
1777
 
1778
  else:
1779
 
1780
- show_message("Will create image (no refining or upscaling)");
1781
-
1782
  if show_messages_in_command_prompt == 1:
1783
-
1784
  print ("Image steps...");
1785
 
 
 
 
1786
  image = pipe(
1787
  prompt = prompt_text,
1788
  negative_prompt = negative_prompt_text,
@@ -1791,7 +2303,8 @@ def create_image_function (
1791
  num_inference_steps = base_model_num_inference_steps,
1792
  guidance_scale = guidance_scale,
1793
  num_images_per_prompt = 1,
1794
- generator = generator
 
1795
  ).images[0]
1796
 
1797
  if device == "cuda":
@@ -1851,51 +2364,17 @@ def create_image_function (
1851
  ])
1852
 
1853
  info_about_prompt_lines_array.extend([
1854
- "Base Model Steps: " + str(base_model_num_inference_steps),
1855
  "Model: " + nice_model_name
1856
  ])
1857
 
1858
- if use_refiner == 1:
1859
-
1860
- # Default Configuration
1861
-
1862
-
1863
-
1864
-
1865
-
1866
-
1867
-
1868
-
1869
-
1870
- # not done yet
1871
-
1872
-
1873
-
1874
-
1875
-
1876
-
1877
-
1878
-
1879
-
1880
-
1881
- # Online Configuration
1882
-
1883
- if refining_denoise_start_for_online_config_field_value != 0:
1884
-
1885
- nice_refiner_denoise_start = str(refining_denoise_start_for_online_config_field_value * 100) + "%"
1886
 
1887
- info_about_prompt_lines_array.extend([
1888
- "Refiner?: Yes",
1889
- "Refiner denoise start %: " + nice_refiner_denoise_start
1890
- ])
1891
 
1892
- if int(refining_number_of_iterations_for_online_config_field_value) != 0:
1893
 
1894
- nice_refiner_number_of_iterations = str(refining_number_of_iterations_for_online_config_field_value)
1895
 
1896
- info_about_prompt_lines_array.extend([
1897
- "Refiner number of iterations: " + nice_refiner_number_of_iterations
1898
- ])
1899
 
1900
  if use_upscaler == 1:
1901
 
@@ -2069,8 +2548,8 @@ def create_image_function (
2069
  # Cancel Image Processing
2070
  #
2071
  # When running on Windows, this is an attempt at closing the command
2072
- # prompt from the web interface. It's really not worth having this. You
2073
- # can just close the prompt. I would like a nice way to cancel image
2074
  # creation, but couldn't figure that out.
2075
  #
2076
  #####################
@@ -2216,11 +2695,11 @@ def model_configuration_field_update_function(
2216
 
2217
 
2218
 
2219
- is_config_state = 0
2220
 
2221
  if model_configuration_name_value in default_model_configuration_object:
2222
 
2223
- is_config_state = 1
2224
 
2225
  negative_prompt_field_visibility = True
2226
  negative_prompt_for_sdxl_turbo_field_visibility = False
@@ -2267,7 +2746,7 @@ def model_configuration_field_update_function(
2267
  refiner_default_config_accordion_visibility = False
2268
  refiner_online_config_accordion_visibility = True
2269
 
2270
- if is_config_state == 1:
2271
 
2272
  refiner_default_config_accordion_visibility = True
2273
  refiner_online_config_accordion_visibility = False
@@ -2286,6 +2765,12 @@ def model_configuration_field_update_function(
2286
  refining_selection_online_config_normal_field_visibility = False
2287
  refining_selection_online_config_automatically_selected_field_visibility = True
2288
 
 
 
 
 
 
 
2289
 
2290
 
2291
  refiner_default_config_accordion_update = gr.Accordion(
@@ -2308,6 +2793,10 @@ def model_configuration_field_update_function(
2308
  visible = refining_selection_online_config_automatically_selected_field_visibility
2309
  )
2310
 
 
 
 
 
2311
 
2312
 
2313
  return {
@@ -2322,7 +2811,9 @@ def model_configuration_field_update_function(
2322
  refiner_online_config_accordion: refiner_online_config_accordion_update,
2323
  refining_selection_automatically_selected_message_field: refining_selection_automatically_selected_message_field_update,
2324
  refining_selection_online_config_normal_field: refining_selection_online_config_normal_field_update,
2325
- refining_selection_online_config_automatically_selected_field: refining_selection_online_config_automatically_selected_field_update
 
 
2326
 
2327
  }
2328
 
@@ -2358,11 +2849,11 @@ def update_refiner_and_upscaler_status_function(
2358
 
2359
  model_configuration_name_value = base_model_object_of_model_configuration_arrays[base_model_field_value][model_configuration_field_index]
2360
 
2361
- is_config_state = 0
2362
 
2363
  if model_configuration_name_value in default_model_configuration_object:
2364
 
2365
- is_config_state = 1
2366
 
2367
  refining_selection_default_config_field_value = numerical_bool(refining_selection_default_config_field_value)
2368
  refining_selection_online_config_normal_field_value = numerical_bool(refining_selection_online_config_normal_field_value)
@@ -2373,11 +2864,19 @@ def update_refiner_and_upscaler_status_function(
2373
 
2374
  if (
2375
  (
2376
- (is_config_state == 1) and
2377
- refining_selection_online_config_normal_field_value
2378
  ) or (
2379
- (is_config_state != 1) and
2380
- refining_selection_online_config_automatically_selected_field_value
 
 
 
 
 
 
 
 
2381
  )
2382
  ):
2383
 
@@ -2436,15 +2935,25 @@ def update_refiner_and_upscaler_status_function(
2436
  # Hide border when yield is used:
2437
  # https://github.com/gradio-app/gradio/issues/5479
2438
  # .generating {border: none !important;}
 
 
 
 
 
 
 
 
 
2439
 
2440
  with gr.Blocks(
2441
  title = "AI Image Creation",
2442
- css = "footer{display:none !important}",
2443
  theme = gr.themes.Default(
2444
  spacing_size = gr.themes.sizes.spacing_md,
2445
  # spacing_size = gr.themes.sizes.spacing_sm,
2446
  radius_size = gr.themes.sizes.radius_none
2447
- )
 
2448
  ) as sd_interface:
2449
 
2450
  gr.Markdown(opening_html)
@@ -2487,7 +2996,7 @@ with gr.Blocks(
2487
  ):
2488
 
2489
  with gr.Accordion(
2490
- label = "Refiner (Default Config)",
2491
  elem_id = "refiner_default_config_accordion_id",
2492
  open = refiner_default_config_accordion_open,
2493
  visible = refiner_default_config_accordion_visible
@@ -2496,7 +3005,7 @@ with gr.Blocks(
2496
  #
2497
  #
2498
  #
2499
- # Refiner (Default Config)
2500
  #
2501
  #
2502
  #
@@ -2516,44 +3025,40 @@ with gr.Blocks(
2516
 
2517
  with gr.Row():
2518
 
2519
- refining_use_denoising_start_in_base_model_when_using_refiner_field = gr.Checkbox(
2520
- label = "Use \"denoising_start\" value as \"denoising_end\" value in base model generation when using refiner (doesn't work yet)",
2521
- value = default_use_denoising_start_in_base_model_when_using_refiner,
2522
- # interactive = True,
2523
- container = True
 
2524
  )
2525
 
2526
  with gr.Row():
2527
 
2528
- refining_base_model_output_to_refiner_is_in_latent_space_field = gr.Checkbox(
2529
- label = "Base model output in latent space instead of PIL image when using refiner (doesn't work yet)",
2530
- value = default_base_model_output_to_refiner_is_in_latent_space,
2531
- # interactive = True,
2532
- container = True
2533
  )
2534
 
2535
  with gr.Row():
2536
 
2537
- refining_denoise_start_for_default_config_field = gr.Slider(
2538
- label = "Refiner denoise start %",
2539
- minimum = 0.7,
2540
- maximum = 0.99,
2541
- value = 0.95,
2542
- step = 0.01
2543
  )
2544
 
2545
- # with gr.Row():
2546
 
2547
- # refining_number_of_iterations_for_default_config_field = gr.Slider(
2548
- # label = "Refiner number of iterations",
2549
- # minimum = 1,
2550
- # maximum = 100,
2551
- # value = 100,
2552
- # step = 1
2553
- # )
2554
 
2555
  with gr.Accordion(
2556
- label = "Refiner (Online Config)",
2557
  elem_id = "refiner_online_config_accordion_id",
2558
  open = refiner_online_config_accordion_open,
2559
  visible = refiner_online_config_accordion_visible
@@ -2562,7 +3067,7 @@ with gr.Blocks(
2562
  #
2563
  #
2564
  #
2565
- # Refiner (Online Config)
2566
  #
2567
  #
2568
  #
@@ -2618,12 +3123,19 @@ with gr.Blocks(
2618
 
2619
  with gr.Row():
2620
 
 
 
 
 
 
 
2621
  refining_number_of_iterations_for_online_config_field = gr.Slider(
2622
  label = "Refiner number of iterations",
2623
  minimum = 1,
2624
  maximum = 100,
2625
  value = 100,
2626
- step = 1
 
2627
  )
2628
 
2629
  with gr.Group(
@@ -2794,13 +3306,6 @@ with gr.Blocks(
2794
 
2795
  with gr.Column(scale = 1):
2796
 
2797
- # with gr.Row():
2798
-
2799
- # generate_image_btn = gr.Button(
2800
- # value = "Generate",
2801
- # variant = "primary"
2802
- # )
2803
-
2804
  with gr.Row():
2805
 
2806
  if use_image_gallery == 1:
@@ -2832,21 +3337,36 @@ with gr.Blocks(
2832
 
2833
  with gr.Row():
2834
 
2835
- output_text_field = gr.Text(
2836
  label = "Prompt Information:",
2837
  value = "After an image is generated, its generation information will appear here." + additional_prompt_info_html,
2838
  show_copy_button = True,
2839
- lines = 4
 
 
 
2840
  )
2841
 
2842
  with gr.Row():
2843
 
2844
- prompt_truncated_field = gr.HTML(
 
 
 
 
 
 
2845
  value = "",
 
2846
  visible = False
2847
  )
2848
 
2849
- global cancel_image_btn
 
 
 
 
 
2850
 
2851
  if enable_close_command_prompt_button == 1:
2852
 
@@ -2857,6 +3377,8 @@ with gr.Blocks(
2857
 
2858
  gr.Markdown("Closing the command prompt will cancel any images in the process of being created. You will need to launch it again to create more images.")
2859
 
 
 
2860
  if len(ending_html) > 0:
2861
 
2862
  with gr.Accordion(
@@ -2902,7 +3424,8 @@ with gr.Blocks(
2902
  refiner_online_config_accordion,
2903
  refining_selection_automatically_selected_message_field,
2904
  refining_selection_online_config_normal_field,
2905
- refining_selection_online_config_automatically_selected_field
 
2906
  ],
2907
  queue = None,
2908
  show_progress = "hidden"
@@ -2916,7 +3439,8 @@ with gr.Blocks(
2916
  outputs = [
2917
  output_image_field,
2918
  output_text_field
2919
- ]
 
2920
  )
2921
 
2922
  if (
@@ -2931,7 +3455,8 @@ with gr.Blocks(
2931
  triggers_array.extend([
2932
  refining_selection_default_config_field.change,
2933
  refining_selection_online_config_normal_field.change,
2934
- refining_selection_online_config_automatically_selected_field.change
 
2935
  ])
2936
 
2937
  if enable_upscaler == 1:
@@ -2959,6 +3484,17 @@ with gr.Blocks(
2959
  )
2960
 
2961
  generate_image_btn_click_event = generate_image_btn.click(
 
 
 
 
 
 
 
 
 
 
 
2962
  fn = create_image_function,
2963
  inputs = [
2964
  base_model_field,
@@ -2972,9 +3508,11 @@ with gr.Blocks(
2972
  base_model_num_inference_steps_field_for_sdxl_turbo_field,
2973
  seed_field,
2974
 
 
2975
  refining_selection_online_config_normal_field,
2976
  refining_selection_online_config_automatically_selected_field,
2977
 
 
2978
  refining_use_denoising_start_in_base_model_when_using_refiner_field,
2979
  refining_base_model_output_to_refiner_is_in_latent_space_field,
2980
 
@@ -2988,9 +3526,46 @@ with gr.Blocks(
2988
  output_image_field,
2989
  output_text_field,
2990
  prompt_truncated_field
2991
- ]
 
 
 
 
 
 
 
 
 
 
2992
  )
2993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994
  if enable_close_command_prompt_button == 1:
2995
 
2996
  # https://github.com/gradio-app/gradio/pull/2433/files
@@ -3005,7 +3580,6 @@ with gr.Blocks(
3005
 
3006
 
3007
  sd_interface.queue(
3008
- # concurrency_limit = 1,
3009
  max_size = 20
3010
  )
3011
 
@@ -3024,8 +3598,3 @@ sd_interface.launch(
3024
  show_error = True,
3025
  max_threads = 1
3026
  )
3027
-
3028
- sd_interface.load(
3029
- scroll_to_output = False,
3030
- show_progress = "full"
3031
- )
 
4
  import modin.pandas as pd
5
  from PIL import Image
6
  from diffusers import DiffusionPipeline
7
+ import os
8
 
9
  ##########
10
 
 
67
  ####################
68
 
69
  #
70
+ # Use Custom Hugging Face Cache Directory
71
  #
72
  # The folder where model data is stored can get huge. I choose to add it
73
  # to a place where I am more likely to notice it more often. If you use
74
+ # other Hugging Face things however, and will use these models in those
75
  # other things, then you might want to consider not having this here as
76
  # it would duplicate the model data.
77
  #
 
172
  #
173
  # Include Close Command Prompt / Cancel Button
174
  #
175
+ # This doesn't work well at all. It just closes the command prompt. And
176
+ # it currently isn't canceling image creation either when used. Don't use
177
+ # it.
178
  #
179
 
180
  enable_close_command_prompt_button = 0
 
232
 
233
  ####################
234
 
235
+ #
236
+ # Show Image Creation Progress Log
237
+ #
238
+ # This adds the current step that image generation is on.
239
+ #
240
+
241
+ show_image_creation_progress_log = 1
242
+
243
+ ####################
244
+
245
+ #
246
+ # Show Messages In Command Prompt
247
+ #
248
+ # Messages will be printed in command prompt.
249
+ #
250
+
251
+ show_messages_in_command_prompt = 1
252
+
253
+ ####################
254
+
255
+ #
256
+ # Show Messages In Modal On Page
257
+ #
258
+ # A popup appears in the top right corner on the page.
259
+ #
260
+
261
+ show_messages_in_modal_on_page = 0
262
+
263
+ ####################
264
+
265
  #
266
  # Up Next Is Various Configuration Arrays and Objects
267
  #
 
374
  "sdxl_2023-09-05": 1
375
  }
376
 
377
+ # For now, the ones that force the refiner also have the "Refiner Number of
378
+ # Iterations" available.
379
+
380
+ model_configuration_include_refiner_number_of_steps_object = model_configuration_force_refiner_object
381
+
382
+ #model_configuration_include_refiner_number_of_steps_object = {
383
+ # "sdxl_2023-11-12": 1,
384
+ # "sdxl_2023-09-05": 1
385
+ #}
386
+
387
+ ####################
388
+
389
+ hugging_face_refiner_partial_path = "stabilityai/stable-diffusion-xl-refiner-1.0"
390
+ hugging_face_upscaler_partial_path = "stabilityai/sd-x2-latent-upscaler"
391
+
392
  ####################
393
 
394
  base_model_model_configuration_defaults_object = {
 
451
 
452
  ####################
453
 
454
+ default_prompt = "black cat"
455
  default_negative_prompt = ""
456
 
457
  default_width = 768
 
462
  default_base_model_base_model_num_inference_steps = 50
463
  default_base_model_base_model_num_inference_steps_for_sdxl_turbo = 2
464
 
465
+ #default_seed_maximum = 999999999999999999
466
+ default_seed_maximum = 1000000000000000000
467
  default_seed_value = 876678173805928800
468
 
469
  # If you turn off the refiner it will not be available in the display unless
 
477
  default_refiner_selected = 0
478
  default_upscaler_selected = 0
479
 
480
+ # Accordion visible on load?
481
+ #
482
+ # 0 If selected as default, will be open. Otherwise, closed.
483
+ # 1 Always starts open
484
+
485
+ default_refiner_accordion_open = 1
486
+ default_upscaler_accordion_open = 1
487
+
488
  # xFormers:
489
  #
490
  # https://huggingface.co/docs/diffusers/optimization/xformers
 
549
 
550
 
551
 
 
 
 
 
 
552
  opening_html = ""
553
 
554
  if device == "cpu":
555
 
556
+ opening_html = "<span style=\"font-weight: bold; color: #c00;\">THIS APP IS EXCEPTIONALLY SLOW!</span><br/>This app is not running on a GPU. The first time it loads after the space is rebuilt it might take 10 minutes to generate a SDXL Turbo image. It may take 2 to 3 minutes after that point to do two steps. For other models, it may take hours to create a single image."
557
 
558
 
559
 
 
579
 
580
 
581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
582
  ###############################################################################
583
  ###############################################################################
584
  #
 
591
  ###############################################################################
592
  ###############################################################################
593
 
594
+ hugging_face_hub_is_offline = 0
595
+
596
+ if (
597
+ ("HF_HUB_OFFLINE" in os.environ) and
598
+ (int(os.environ["HF_HUB_OFFLINE"]) == 1)
599
+ ):
600
+
601
+ hugging_face_hub_is_offline = 1
602
+
603
+ if hugging_face_hub_is_offline == 0:
604
+
605
+ print ("Note: The Hugging Face cache directory does not automatically delete older data. Over time, it could eventually grow to use all the space on the drive it is on. You either need to manually clean out the folder occasionally or see Instructons.txt on how to not automatically update data once you have downloaded everything you need.")
606
+
607
 
 
608
 
609
  try:
610
  if (str(os.uname()).find("magicfixeseverything") >= 0):
 
620
  auto_save_imagery = 0
621
  show_messages_in_modal_on_page = 0
622
 
623
+ show_messages_in_command_prompt = 1
624
+ show_messages_in_modal_on_page = 1
625
+
626
+ if device == "cpu":
627
+
628
+ show_image_creation_progress_log = 1
629
+
630
  ending_html = """
631
  If you would like to download this app to run offline on a Windows computer that has a NVIDIA graphics card, click <a href=\"https://huggingface.co/spaces/magicfixeseverything/ai_image_creation/resolve/main/ai_image_creation.zip\">here</a> to download it.
632
 
 
829
 
830
 
831
 
832
+ default_use_denoising_start_in_base_model_when_using_refiner_is_selected = False
833
+
834
+ if default_use_denoising_start_in_base_model_when_using_refiner == 1:
835
+
836
+ default_use_denoising_start_in_base_model_when_using_refiner_is_selected = True
837
+
838
+ default_base_model_output_to_refiner_is_in_latent_space_is_selected = False
839
+
840
+ if default_base_model_output_to_refiner_is_in_latent_space == 1:
841
+
842
+ default_base_model_output_to_refiner_is_in_latent_space_is_selected = True
843
+
844
+
845
+
846
  refiner_default_config_accordion_visible = True
847
 
848
  if (
 
855
  refiner_default_config_accordion_open = False
856
 
857
  if (
858
+ (default_refiner_accordion_open == 1) or
859
+ (
860
+ (is_default_config == 1) and
861
+ (default_refiner_selected == 1)
862
+ )
863
  ):
864
 
865
  refiner_default_config_accordion_open = True
 
878
  refiner_online_config_accordion_open = False
879
 
880
  if (
881
+ (default_refiner_accordion_open == 1) or
882
+ (
883
+ (is_default_config != 1) and
884
+ (default_refiner_selected == 1)
885
+ )
886
  ):
887
 
888
  refiner_online_config_accordion_open = True
 
905
 
906
  upscaler_accordion_open = False
907
 
908
+ if (
909
+ (default_upscaler_selected == 1) or
910
+ (default_upscaler_accordion_open == 1)
911
+ ):
912
 
913
  upscaler_accordion_open = True
914
 
 
955
 
956
 
957
 
 
 
 
 
958
  last_model_configuration_name_value = ""
959
  last_refiner_selected = ""
960
  last_upscaler_selected = ""
961
 
962
 
963
 
964
+ if show_image_creation_progress_log == 1:
965
+
966
+ import time
967
+
968
+
969
+
970
+ current_progress_text = ""
971
+ current_actual_total_base_model_steps = ""
972
+ current_actual_total_refiner_steps = ""
973
+ current_actual_total_upscaler_steps = ""
974
+
975
+
976
+
977
  default_base_model_choices_array = []
978
 
979
  stored_model_configuration_names_object = {}
 
1076
  def seed_not_valid(seed_num_str):
1077
  try:
1078
  seed_num = int(seed_num_str)
1079
+ if (seed_num > 0) and (seed_num <= default_seed_maximum):
1080
  return False
1081
  else:
1082
  return True
 
1215
 
1216
 
1217
 
1218
+ #####################
1219
+ #
1220
+ # Callback Function for Base Model Progress
1221
+ #
1222
+ # Add the current step the generation is on in the base model to the web
1223
+ # interface.
1224
+ #
1225
+ #####################
1226
+
1227
+ def callback_function_for_base_model_progress(
1228
+ callback_pipe,
1229
+ callback_step_index,
1230
+ callback_timestep,
1231
+ callback_kwargs
1232
+ ):
1233
+
1234
+ global current_progress_text
1235
+
1236
+ global current_base_model_generation_start_time
1237
+
1238
+ current_progress_text = "Base model steps complete... " + str(callback_step_index) + " of " + str(current_actual_total_base_model_steps)
1239
+
1240
+ if int(callback_step_index) == 0:
1241
+
1242
+ current_base_model_generation_start_time = time.time()
1243
+
1244
+ if int(callback_step_index) > 0:
1245
+
1246
+ seconds_per_step = ((time.time() - current_base_model_generation_start_time) / int(callback_step_index))
1247
+
1248
+ (
1249
+ time_per_step_hours,
1250
+ time_per_step_minutes,
1251
+ time_per_step_seconds
1252
+ ) = convert_seconds(seconds_per_step)
1253
+
1254
+ if time_per_step_hours > 0:
1255
+
1256
+ hours_text = "hr"
1257
+
1258
+ if time_per_step_hours > 1:
1259
+
1260
+ hours_text = "hrs"
1261
+
1262
+ nice_time_per_step = str(int(time_per_step_hours)) + " " + hours_text + ". " + str(int(time_per_step_minutes)) + " min. " + str(round(generation_partial_seconds, 1)) + " sec."
1263
+
1264
+ elif time_per_step_minutes > 0:
1265
+
1266
+ nice_time_per_step = str(int(time_per_step_minutes)) + " min. " + str(round(generation_partial_seconds, 1)) + " sec."
1267
+
1268
+ else:
1269
+
1270
+ nice_time_per_step = str(round(time_per_step_seconds, 2)) + " sec."
1271
+
1272
+ current_progress_text += "\n" + nice_time_per_step + " per step"
1273
+
1274
+ return {}
1275
+
1276
+
1277
+
1278
+
1279
+
1280
+
1281
+
1282
+ #####################
1283
+ #
1284
+ # Callback Function for Refiner Progress
1285
+ #
1286
+ # Add the current step the generation is on in the refiner to the web
1287
+ # interface.
1288
+ #
1289
+ #####################
1290
+
1291
+ def callback_function_for_refiner_progress(
1292
+ callback_pipe,
1293
+ callback_step_index,
1294
+ callback_timestep,
1295
+ callback_kwargs
1296
+ ):
1297
+
1298
+ global current_progress_text
1299
+
1300
+ global current_refiner_generation_start_time
1301
+
1302
+ current_progress_text = "Refiner steps complete... " + str(callback_step_index) + " of " + str(current_actual_total_refiner_steps)
1303
+
1304
+ if int(callback_step_index) == 0:
1305
+
1306
+ current_refiner_generation_start_time = time.time()
1307
+
1308
+ if int(callback_step_index) > 0:
1309
+
1310
+ seconds_per_step = ((time.time() - current_refiner_generation_start_time) / int(callback_step_index))
1311
+
1312
+ (
1313
+ time_per_step_hours,
1314
+ time_per_step_minutes,
1315
+ time_per_step_seconds
1316
+ ) = convert_seconds(seconds_per_step)
1317
+
1318
+ if time_per_step_hours > 0:
1319
+
1320
+ hours_text = "hr"
1321
+
1322
+ if time_per_step_hours > 1:
1323
+
1324
+ hours_text = "hrs"
1325
+
1326
+ nice_time_per_step = str(int(time_per_step_hours)) + " " + hours_text + ". " + str(int(time_per_step_minutes)) + " min. " + str(round(generation_partial_seconds, 1)) + " sec."
1327
+
1328
+ elif time_per_step_minutes > 0:
1329
+
1330
+ nice_time_per_step = str(int(time_per_step_minutes)) + " min. " + str(round(generation_partial_seconds, 1)) + " sec."
1331
+
1332
+ else:
1333
+
1334
+ nice_time_per_step = str(round(time_per_step_seconds, 2)) + " sec."
1335
+
1336
+ current_progress_text += "\n" + nice_time_per_step + " per step"
1337
+
1338
+ return {}
1339
+
1340
+
1341
+
1342
+
1343
+
1344
+
1345
+
1346
+ #####################
1347
+ #
1348
+ # Update Log Progress
1349
+ #
1350
+ # This is called every second when "show_image_creation_progress_log" is
1351
+ # set to 1. It displays the latest value in "current_progress_text".
1352
+ #
1353
+ #####################
1354
+
1355
+ def update_log_progress ():
1356
+
1357
+ global current_progress_text
1358
+
1359
+ log_text_field_update = gr.Textbox(
1360
+ value = current_progress_text
1361
+ )
1362
+
1363
+ return {
1364
+ log_text_field: log_text_field_update
1365
+ }
1366
+
1367
+
1368
+
1369
+
1370
+
1371
+
1372
+
1373
+ #####################
1374
+ #
1375
+ # Before Create Image Function
1376
+ #
1377
+ # This is loaded before the image creation begins.
1378
+ #
1379
+ #####################
1380
+
1381
+ def before_create_image_function ():
1382
+
1383
+ output_text_field_update = gr.Textbox(
1384
+ visible = False
1385
+ )
1386
+
1387
+ log_text_field_update = gr.Textbox(
1388
+ value = "",
1389
+ visible = True,
1390
+ every = 1
1391
+ )
1392
+
1393
+ generate_image_btn_update = gr.Button(
1394
+ value = "Generating...",
1395
+ variant = "secondary",
1396
+ interactive = False
1397
+ )
1398
+
1399
+ return {
1400
+ output_text_field: output_text_field_update,
1401
+ log_text_field: log_text_field_update,
1402
+ generate_image_btn: generate_image_btn_update
1403
+ }
1404
+
1405
+
1406
+
1407
+
1408
+
1409
+
1410
+
1411
+ #####################
1412
+ #
1413
+ # After Create Image Function
1414
+ #
1415
+ # This is loaded once image creation has completed.
1416
+ #
1417
+ #####################
1418
+
1419
+ def after_create_image_function ():
1420
+
1421
+ output_text_field_update = gr.Textbox(
1422
+ visible = True
1423
+ )
1424
+
1425
+ log_text_field_update = gr.Textbox(
1426
+ value = "",
1427
+ visible = False,
1428
+ every = None
1429
+ )
1430
+
1431
+ generate_image_btn_update = gr.Button(
1432
+ value = "Generate",
1433
+ variant = "primary",
1434
+ interactive = True
1435
+ )
1436
+
1437
+ return {
1438
+ output_text_field: output_text_field_update,
1439
+ log_text_field: log_text_field_update,
1440
+ generate_image_btn: generate_image_btn_update
1441
+ }
1442
+
1443
+
1444
+
1445
+
1446
+
1447
+
1448
+
1449
+
1450
  #####################
1451
  #
1452
  # Create Image Function
 
1467
  base_model_num_inference_steps_field_for_sdxl_turbo,
1468
  actual_seed,
1469
 
1470
+ refining_selection_default_config_field_value,
1471
  refining_selection_online_config_normal_field_value,
1472
  refining_selection_online_config_automatically_selected_field_value,
1473
 
1474
+ refining_denoise_start_for_default_config_field_value,
1475
  refining_use_denoising_start_in_base_model_when_using_refiner_field_value,
1476
  refining_base_model_output_to_refiner_is_in_latent_space_field_value,
1477
 
 
1482
  upscaling_num_inference_steps
1483
  ):
1484
 
1485
+ global current_progress_text
1486
+ global current_actual_total_base_model_steps
1487
+ global current_actual_total_refiner_steps
1488
+
1489
+ current_progress_text = ""
1490
+ current_actual_total_base_model_steps = 0
1491
+ current_actual_total_refiner_steps = 0
1492
+ current_actual_total_upscaler_steps = 0
1493
+
1494
+ refining_selection_default_config_field_value = numerical_bool(refining_selection_default_config_field_value)
1495
  refining_selection_online_config_normal_field_value = numerical_bool(refining_selection_online_config_normal_field_value)
1496
  refining_selection_online_config_automatically_selected_field_value = numerical_bool(refining_selection_online_config_automatically_selected_field_value)
1497
 
 
1499
  refining_use_denoising_start_in_base_model_when_using_refiner_field_value = numerical_bool(refining_use_denoising_start_in_base_model_when_using_refiner_field_value)
1500
  refining_base_model_output_to_refiner_is_in_latent_space_field_value = numerical_bool(refining_base_model_output_to_refiner_is_in_latent_space_field_value)
1501
 
1502
+
1503
+
1504
  use_upscaler = numerical_bool(upscaling_selection_field_value)
1505
 
1506
 
 
1510
 
1511
 
1512
 
1513
+ current_actual_total_base_model_steps = base_model_num_inference_steps
1514
+ current_actual_total_upscaler_steps = upscaling_num_inference_steps
1515
+
1516
+
1517
+
1518
+ is_default_config_state = 0
1519
 
1520
  if model_configuration_name_value in default_model_configuration_object:
1521
 
1522
+ is_default_config_state = 1
1523
 
 
1524
 
1525
 
1526
+ use_refiner = 0
1527
 
1528
  if (
1529
  (
1530
+ (is_default_config_state == 1) and
1531
+ refining_selection_default_config_field_value
1532
  ) or (
1533
+ (is_default_config_state != 1) and
1534
+ (
1535
+ (
1536
+ (model_configuration_name_value not in model_configuration_force_refiner_object) and
1537
+ refining_selection_online_config_normal_field_value
1538
+ ) or (
1539
+ (model_configuration_name_value in model_configuration_force_refiner_object) and
1540
+ refining_selection_online_config_automatically_selected_field_value
1541
+ )
1542
+ )
1543
  )
1544
  ):
1545
 
 
1551
 
1552
  negative_prompt_text = ""
1553
  base_model_num_inference_steps = base_model_num_inference_steps_field_for_sdxl_turbo
1554
+ current_actual_total_base_model_steps = base_model_num_inference_steps
1555
  guidance_scale = 0
1556
 
1557
 
 
1570
  (model_configuration_name_value != last_model_configuration_name_value)
1571
  ):
1572
 
1573
+ current_progress_text = "Base model is loading."
1574
+ show_message(current_progress_text)
1575
 
1576
  if (last_model_configuration_name_value != ""):
1577
 
1578
+ # del pipe
1579
+ if 'pipe' in globals():
1580
+ del pipe
1581
 
1582
  if 'refiner' in globals():
1583
  del refiner
 
1662
 
1663
  if use_refiner == 1:
1664
 
1665
+ current_progress_text = "Refiner is loading."
1666
+ show_message(current_progress_text)
1667
 
1668
  refiner_kwargs = {
1669
  "use_safetensors": True
 
1679
  refiner_kwargs["cache_dir"] = hugging_face_cache_dir
1680
 
1681
  refiner = DiffusionPipeline.from_pretrained(
1682
+ hugging_face_refiner_partial_path,
1683
  **refiner_kwargs
1684
  )
1685
 
 
1714
 
1715
  if use_upscaler == 1:
1716
 
1717
+ current_progress_text = "Upscaler is loading."
1718
+ show_message(current_progress_text)
1719
 
1720
  upscaler_kwargs = {
1721
  "use_safetensors": True
 
1723
 
1724
  if device == "cuda":
1725
 
 
1726
  upscaler_kwargs["torch_dtype"] = torch.float16
1727
 
1728
  if use_custom_hugging_face_cache_dir == 1:
 
1730
  upscaler_kwargs["cache_dir"] = hugging_face_cache_dir
1731
 
1732
  upscaler = DiffusionPipeline.from_pretrained(
1733
+ hugging_face_upscaler_partial_path,
1734
  **upscaler_kwargs
1735
  )
1736
 
 
1852
 
1853
 
1854
 
1855
+ if show_image_creation_progress_log == 1:
1856
+
1857
+ callback_to_do_for_base_model_progress = callback_function_for_base_model_progress
1858
+ callback_to_do_for_refiner_progress = callback_function_for_refiner_progress
1859
+
1860
+ else:
1861
+
1862
+ callback_to_do_for_base_model_progress = None
1863
+ callback_to_do_for_refiner_progress = None
1864
+
1865
+
1866
+
1867
  if model_configuration_name_value.find("default") < 0:
1868
 
1869
 
 
1909
 
1910
  upscaling_num_inference_steps = 5
1911
 
1912
+ current_actual_total_upscaler_steps = upscaling_num_inference_steps
1913
+
1914
+
1915
+
1916
+ if show_messages_in_command_prompt == 1:
1917
+ print ("Initial image creation has begun.");
1918
+
1919
+ if show_image_creation_progress_log == 1:
1920
+ current_progress_text = "Initial image creation has begun."
1921
+
1922
+ int_image = pipe(
1923
+ prompt,
1924
+ prompt_2=prompt_2,
1925
+ negative_prompt=negative_prompt,
1926
+ negative_prompt_2=negative_prompt_2,
1927
+ num_inference_steps=steps,
1928
+ height=height,
1929
+ width=width,
1930
+ guidance_scale=scale,
1931
+ num_images_per_prompt=1,
1932
+ generator=generator,
1933
+ output_type="latent",
1934
+ callback_on_step_end=callback_to_do_for_base_model_progress
1935
+ ).images
1936
+
1937
+ if show_messages_in_command_prompt == 1:
1938
+ print ("Refiner steps...");
1939
+
1940
+ if show_image_creation_progress_log == 1:
1941
+ current_progress_text = "Refining is beginning."
1942
 
1943
+ current_actual_total_refiner_steps = int(int(n_steps) * float(high_noise_frac))
1944
+
1945
+ nice_refiner_denoise_start = str(refining_denoise_start_for_online_config_field_value)
1946
+
1947
+ refiner_info_for_info_about_prompt_lines_array = [
1948
+ "Refiner? Yes"
1949
+ "Refiner denoise start %: " + nice_refiner_denoise_start,
1950
+ "Refiner number of iterations: " + str(refining_number_of_iterations_for_online_config_field_value),
1951
+ "Actual Refining Steps: " + str(current_actual_total_refiner_steps)
1952
+ ]
1953
+
1954
+ image = refiner(
1955
+ prompt=prompt,
1956
+ prompt_2=prompt_2,
1957
+ negative_prompt=negative_prompt,
1958
+ negative_prompt_2=negative_prompt_2,
1959
+ image=int_image,
1960
+ num_inference_steps=n_steps,
1961
+ denoising_start=high_noise_frac,
1962
+ callback_on_step_end=callback_to_do_for_refiner_progress
1963
+ ).images[0]
1964
 
 
 
1965
  if upscaling == 'Yes':
1966
+
1967
+ if show_messages_in_command_prompt == 1:
1968
+ print ("Upscaler steps...");
1969
+
1970
+ if show_image_creation_progress_log == 1:
1971
+ current_progress_text = "Upscaling in progress.\n(step by step progress not displayed)"
1972
 
1973
  # Changed
1974
  #
1975
  # num_inference_steps=15
1976
  #
1977
 
1978
+ upscaled = upscaler(
1979
+ prompt=prompt,
1980
+ negative_prompt=negative_prompt,
1981
+ image=image,
1982
+ num_inference_steps=upscaling_num_inference_steps,
1983
+ guidance_scale=0
1984
+ ).images[0]
1985
+
1986
  if device == "cuda":
1987
  torch.cuda.empty_cache()
1988
 
 
 
 
 
 
1989
  image_to_return = upscaled
1990
 
1991
  else:
1992
+
 
 
1993
  if device == "cuda":
1994
  torch.cuda.empty_cache()
1995
 
 
 
 
 
1996
  image_to_return = image
1997
 
1998
 
 
2008
 
2009
 
2010
  if upscale == "Yes":
2011
+
2012
+ if show_messages_in_command_prompt == 1:
2013
+ print ("Initial image creation has begun.");
2014
+
2015
+ if show_image_creation_progress_log == 1:
2016
+ current_progress_text = "Initial image creation has begun."
2017
+
2018
+ int_image = pipe(
2019
+ Prompt,
2020
+ negative_prompt=negative_prompt,
2021
+ height=height,
2022
+ width=width,
2023
+ num_inference_steps=steps,
2024
+ guidance_scale=scale,
2025
+ callback_on_step_end=callback_to_do_for_base_model_progress
2026
+ ).images
2027
+
2028
+ if show_messages_in_command_prompt == 1:
2029
+ print ("Refiner steps...");
2030
+
2031
+ if show_image_creation_progress_log == 1:
2032
+ current_progress_text = "Refining is beginning."
2033
+
2034
+ default_steps_in_diffusers = 50
2035
+
2036
+ current_actual_total_refiner_steps = int(default_steps_in_diffusers * float(high_noise_frac))
2037
+
2038
+ refiner_info_for_info_about_prompt_lines_array = [
2039
+ "Refiner? Yes"
2040
+ "Refiner denoise start %: " + nice_refiner_denoise_start,
2041
+ "Refiner number of iterations: " + str(current_actual_total_refiner_steps),
2042
+ "Actual Refining Steps: " + str(current_actual_total_refiner_steps)
2043
+ ]
2044
+
2045
+ image = refiner(
2046
+ Prompt,
2047
+ negative_prompt=negative_prompt,
2048
+ image=int_image,
2049
+ num_inference_steps=default_steps_in_diffusers,
2050
+ denoising_start=high_noise_frac,
2051
+ callback_on_step_end=callback_to_do_for_refiner_progress
2052
+ ).images[0]
2053
+
2054
  else:
2055
+
2056
+ if show_messages_in_command_prompt == 1:
2057
+ print ("Image creation has begun.");
2058
+
2059
+ if show_image_creation_progress_log == 1:
2060
+ current_progress_text = "Image creation has begun."
2061
+
2062
+ image = pipe(
2063
+ Prompt,
2064
+ negative_prompt=negative_prompt,
2065
+ height=height,
2066
+ width=width,
2067
+ num_inference_steps=steps,
2068
+ guidance_scale=scale,
2069
+ callback_on_step_end=callback_to_do_for_base_model_progress
2070
+ ).images[0]
2071
 
2072
 
2073
 
 
2085
  #
2086
  #
2087
 
2088
+ if use_refiner == 1:
2089
 
2090
+ if refining_use_denoising_start_in_base_model_when_using_refiner_field_value == 1:
2091
 
2092
+ denoising_end = refining_denoise_start_for_default_config_field_value
2093
 
2094
+ current_actual_total_base_model_steps = int(base_model_num_inference_steps * float(refining_denoise_start_for_default_config_field_value))
2095
 
2096
+ else:
2097
 
2098
+ denoising_end = None
2099
+
2100
+ output_type_before_refiner = "pil"
2101
 
2102
+ if refining_base_model_output_to_refiner_is_in_latent_space_field_value == 1:
2103
+
2104
+ output_type_before_refiner = "latent"
2105
+
2106
+ current_actual_total_refiner_steps = (base_model_num_inference_steps - int(base_model_num_inference_steps * float(refining_denoise_start_for_default_config_field_value)))
2107
+
2108
+ refiner_info_for_info_about_prompt_lines_array = [
2109
+ "Refiner? Yes"
2110
+ ]
2111
+
2112
+ nice_refiner_denoise_start = str(refining_denoise_start_for_online_config_field_value)
2113
+
2114
+ if refining_use_denoising_start_in_base_model_when_using_refiner_field_value == 1:
2115
+
2116
+ refiner_info_for_info_about_prompt_lines_array.extend([
2117
+ "Set \"denoising_end\" in base model generation? Yes",
2118
+ "Base model denoise end %: " + nice_refiner_denoise_start,
2119
+ "Actual Base Model Steps: " + str(current_actual_total_base_model_steps)
2120
+ ])
2121
+
2122
+ else:
2123
+
2124
+ refiner_info_for_info_about_prompt_lines_array.extend([
2125
+ "Set \"denoising_end\" in base model generation? No",
2126
+ ])
2127
+
2128
+ refiner_info_for_info_about_prompt_lines_array.extend([
2129
+ "Refiner denoise start %: " + nice_refiner_denoise_start,
2130
+ "Actual Refining Steps: " + str(current_actual_total_refiner_steps)
2131
+ ])
2132
+
2133
+ if refining_base_model_output_to_refiner_is_in_latent_space_field_value == 1:
2134
+
2135
+ refiner_info_for_info_about_prompt_lines_array.extend([
2136
+ "Base model output in latent space before refining? Yes",
2137
+ ])
2138
+
2139
+ else:
2140
+
2141
+ refiner_info_for_info_about_prompt_lines_array.extend([
2142
+ "Base model output in latent space before refining? No",
2143
+ ])
2144
+
2145
+ if use_upscaler == 1:
2146
+
2147
+ if show_messages_in_command_prompt == 1:
2148
+ print ("Will create initial image, then refine and then upscale.");
2149
  print ("Initial image steps...");
2150
 
2151
+ if show_image_creation_progress_log == 1:
2152
+ current_progress_text = "Initial image creation has begun."
2153
+
2154
  intitial_image = pipe(
2155
  prompt = prompt_text,
2156
  negative_prompt = negative_prompt_text,
 
2160
  guidance_scale = guidance_scale,
2161
  num_images_per_prompt = 1,
2162
  generator = generator,
2163
+ denoising_end = denoising_end,
2164
+ output_type = output_type_before_refiner,
2165
+ callback_on_step_end = callback_to_do_for_base_model_progress
2166
  ).images
2167
 
2168
  if show_messages_in_command_prompt == 1:
 
2169
  print ("Refiner steps...");
2170
 
2171
+ if show_image_creation_progress_log == 1:
2172
+ current_progress_text = "Refining is beginning."
2173
+
2174
  refined_image = refiner(
2175
  prompt = prompt_text,
2176
  negative_prompt = negative_prompt_text,
2177
  image = intitial_image,
2178
  num_inference_steps = base_model_num_inference_steps,
2179
+ denoising_start = refining_denoise_start_for_default_config_field_value,
2180
+ output_type = "pil",
2181
+ callback_on_step_end = callback_to_do_for_refiner_progress
2182
  ).images
2183
 
2184
  if show_messages_in_command_prompt == 1:
 
2185
  print ("Upscaler steps...");
2186
 
2187
+ if show_image_creation_progress_log == 1:
2188
+ current_progress_text = "Upscaling in progress.\n(step by step progress not displayed)"
2189
+
2190
  upscaled_image = upscaler(
2191
  prompt = prompt_text,
2192
  negative_prompt = negative_prompt_text,
 
2202
 
2203
  else:
2204
 
 
 
2205
  if show_messages_in_command_prompt == 1:
2206
+ print ("Will create initial image and then refine.");
2207
  print ("Initial image steps...");
2208
 
2209
+ if show_image_creation_progress_log == 1:
2210
+ current_progress_text = "Initial image creation has begun."
2211
+
2212
  intitial_image = pipe(
2213
  prompt = prompt_text,
2214
  negative_prompt = negative_prompt_text,
2215
  width = image_width,
2216
  height = image_height,
 
 
 
2217
  num_inference_steps = base_model_num_inference_steps,
 
 
 
 
 
 
 
 
 
2218
  guidance_scale = guidance_scale,
2219
  num_images_per_prompt = 1,
2220
  generator = generator,
2221
+ denoising_end = denoising_end,
2222
+ output_type = output_type_before_refiner,
2223
+ callback_on_step_end = callback_to_do_for_base_model_progress
2224
  ).images
2225
 
2226
  if show_messages_in_command_prompt == 1:
 
2227
  print ("Refiner steps...");
2228
 
2229
+ if show_image_creation_progress_log == 1:
2230
+ current_progress_text = "Refining is beginning."
2231
+
2232
  refined_image = refiner(
2233
  prompt = prompt_text,
2234
  negative_prompt = negative_prompt_text,
2235
  image = intitial_image,
2236
+ num_inference_steps = base_model_num_inference_steps,
2237
+ denoising_start = refining_denoise_start_for_default_config_field_value,
2238
+ callback_on_step_end = callback_to_do_for_refiner_progress
 
 
 
 
 
 
 
 
 
 
 
2239
  ).images[0]
2240
 
2241
  if device == "cuda":
 
2247
 
2248
  if use_upscaler == 1:
2249
 
 
 
2250
  if show_messages_in_command_prompt == 1:
2251
+ print ("Will create initial image and then upscale.");
2252
  print ("Initial image steps...");
2253
 
2254
+ if show_image_creation_progress_log == 1:
2255
+ current_progress_text = "Initial image creation has begun."
2256
+
2257
  intitial_image = pipe(
2258
  prompt = prompt_text,
2259
  negative_prompt = negative_prompt_text,
 
2263
  guidance_scale = guidance_scale,
2264
  num_images_per_prompt = 1,
2265
  generator = generator,
2266
+ output_type = "pil",
2267
+ callback_on_step_end = callback_to_do_for_base_model_progress
2268
  ).images
2269
 
2270
  if show_messages_in_command_prompt == 1:
 
2271
  print ("Upscaler steps...");
2272
 
2273
+ if show_image_creation_progress_log == 1:
2274
+ current_progress_text = "Upscaling in progress.\n(step by step progress not displayed)"
2275
+
2276
  upscaled_image = upscaler(
2277
  prompt = prompt_text,
2278
  negative_prompt = negative_prompt_text,
 
2288
 
2289
  else:
2290
 
 
 
2291
  if show_messages_in_command_prompt == 1:
2292
+ print ("Will create image (no refining or upscaling).");
2293
  print ("Image steps...");
2294
 
2295
+ if show_image_creation_progress_log == 1:
2296
+ current_progress_text = "Image creation has begun."
2297
+
2298
  image = pipe(
2299
  prompt = prompt_text,
2300
  negative_prompt = negative_prompt_text,
 
2303
  num_inference_steps = base_model_num_inference_steps,
2304
  guidance_scale = guidance_scale,
2305
  num_images_per_prompt = 1,
2306
+ generator = generator,
2307
+ callback_on_step_end = callback_to_do_for_base_model_progress
2308
  ).images[0]
2309
 
2310
  if device == "cuda":
 
2364
  ])
2365
 
2366
  info_about_prompt_lines_array.extend([
2367
+ "Steps: " + str(base_model_num_inference_steps),
2368
  "Model: " + nice_model_name
2369
  ])
2370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371
 
 
 
 
 
2372
 
2373
+ if use_refiner == 1:
2374
 
2375
+ # Default Configuration
2376
 
2377
+ info_about_prompt_lines_array.extend(refiner_info_for_info_about_prompt_lines_array)
 
 
2378
 
2379
  if use_upscaler == 1:
2380
 
 
2548
  # Cancel Image Processing
2549
  #
2550
  # When running on Windows, this is an attempt at closing the command
2551
+ # prompt from the web display. It's really not worth having this. You can
2552
+ # just close the prompt. I would like a nice way to cancel image
2553
  # creation, but couldn't figure that out.
2554
  #
2555
  #####################
 
2695
 
2696
 
2697
 
2698
+ is_default_config_state = 0
2699
 
2700
  if model_configuration_name_value in default_model_configuration_object:
2701
 
2702
+ is_default_config_state = 1
2703
 
2704
  negative_prompt_field_visibility = True
2705
  negative_prompt_for_sdxl_turbo_field_visibility = False
 
2746
  refiner_default_config_accordion_visibility = False
2747
  refiner_online_config_accordion_visibility = True
2748
 
2749
+ if is_default_config_state == 1:
2750
 
2751
  refiner_default_config_accordion_visibility = True
2752
  refiner_online_config_accordion_visibility = False
 
2765
  refining_selection_online_config_normal_field_visibility = False
2766
  refining_selection_online_config_automatically_selected_field_visibility = True
2767
 
2768
+ refining_number_of_iterations_for_online_config_field_visibility = False
2769
+
2770
+ if model_configuration_name_value in model_configuration_include_refiner_number_of_steps_object:
2771
+
2772
+ refining_number_of_iterations_for_online_config_field_visibility = True
2773
+
2774
 
2775
 
2776
  refiner_default_config_accordion_update = gr.Accordion(
 
2793
  visible = refining_selection_online_config_automatically_selected_field_visibility
2794
  )
2795
 
2796
+ refining_number_of_iterations_for_online_config_field_update = gr.Radio(
2797
+ visible = refining_number_of_iterations_for_online_config_field_visibility
2798
+ )
2799
+
2800
 
2801
 
2802
  return {
 
2811
  refiner_online_config_accordion: refiner_online_config_accordion_update,
2812
  refining_selection_automatically_selected_message_field: refining_selection_automatically_selected_message_field_update,
2813
  refining_selection_online_config_normal_field: refining_selection_online_config_normal_field_update,
2814
+ refining_selection_online_config_automatically_selected_field: refining_selection_online_config_automatically_selected_field_update,
2815
+
2816
+ refining_number_of_iterations_for_online_config_field: refining_number_of_iterations_for_online_config_field_update
2817
 
2818
  }
2819
 
 
2849
 
2850
  model_configuration_name_value = base_model_object_of_model_configuration_arrays[base_model_field_value][model_configuration_field_index]
2851
 
2852
+ is_default_config_state = 0
2853
 
2854
  if model_configuration_name_value in default_model_configuration_object:
2855
 
2856
+ is_default_config_state = 1
2857
 
2858
  refining_selection_default_config_field_value = numerical_bool(refining_selection_default_config_field_value)
2859
  refining_selection_online_config_normal_field_value = numerical_bool(refining_selection_online_config_normal_field_value)
 
2864
 
2865
  if (
2866
  (
2867
+ (is_default_config_state == 1) and
2868
+ refining_selection_default_config_field_value
2869
  ) or (
2870
+ (is_default_config_state != 1) and
2871
+ (
2872
+ (
2873
+ (model_configuration_name_value not in model_configuration_force_refiner_object) and
2874
+ refining_selection_online_config_normal_field_value
2875
+ ) or (
2876
+ (model_configuration_name_value in model_configuration_force_refiner_object) and
2877
+ refining_selection_online_config_automatically_selected_field_value
2878
+ )
2879
+ )
2880
  )
2881
  ):
2882
 
 
2935
  # Hide border when yield is used:
2936
  # https://github.com/gradio-app/gradio/issues/5479
2937
  # .generating {border: none !important;}
2938
+ #
2939
+ # Remove orange border for generation progress.
2940
+ # #generation_progress_id div {border: none;}
2941
+
2942
+ css_to_use = "footer{display:none !important}"
2943
+
2944
+ if show_image_creation_progress_log == 1:
2945
+
2946
+ css_to_use += "#generation_progress_id div {border: none;}"
2947
 
2948
  with gr.Blocks(
2949
  title = "AI Image Creation",
2950
+ css = css_to_use,
2951
  theme = gr.themes.Default(
2952
  spacing_size = gr.themes.sizes.spacing_md,
2953
  # spacing_size = gr.themes.sizes.spacing_sm,
2954
  radius_size = gr.themes.sizes.radius_none
2955
+ ),
2956
+ analytics_enabled = False
2957
  ) as sd_interface:
2958
 
2959
  gr.Markdown(opening_html)
 
2996
  ):
2997
 
2998
  with gr.Accordion(
2999
+ label = "Refiner (Default configuration)",
3000
  elem_id = "refiner_default_config_accordion_id",
3001
  open = refiner_default_config_accordion_open,
3002
  visible = refiner_default_config_accordion_visible
 
3005
  #
3006
  #
3007
  #
3008
+ # Refiner (Default configuration)
3009
  #
3010
  #
3011
  #
 
3025
 
3026
  with gr.Row():
3027
 
3028
+ refining_denoise_start_for_default_config_field = gr.Slider(
3029
+ label = "Refiner denoise start %",
3030
+ minimum = 0.7,
3031
+ maximum = 0.99,
3032
+ value = 0.95,
3033
+ step = 0.01
3034
  )
3035
 
3036
  with gr.Row():
3037
 
3038
+ refiner_steps_text_field = gr.HTML(
3039
+ value = ""
 
 
 
3040
  )
3041
 
3042
  with gr.Row():
3043
 
3044
+ refining_use_denoising_start_in_base_model_when_using_refiner_field = gr.Checkbox(
3045
+ label = "Use \"denoising_start\" value as \"denoising_end\" value in base model generation when using refiner",
3046
+ value = default_use_denoising_start_in_base_model_when_using_refiner_is_selected,
3047
+ interactive = True,
3048
+ container = True
 
3049
  )
3050
 
3051
+ with gr.Row():
3052
 
3053
+ refining_base_model_output_to_refiner_is_in_latent_space_field = gr.Checkbox(
3054
+ label = "Base model output in latent space instead of PIL image when using refiner",
3055
+ value = default_base_model_output_to_refiner_is_in_latent_space_is_selected,
3056
+ interactive = True,
3057
+ container = True
3058
+ )
 
3059
 
3060
  with gr.Accordion(
3061
+ label = "Refiner (Online configuration)",
3062
  elem_id = "refiner_online_config_accordion_id",
3063
  open = refiner_online_config_accordion_open,
3064
  visible = refiner_online_config_accordion_visible
 
3067
  #
3068
  #
3069
  #
3070
+ # Refiner (Online configuration)
3071
  #
3072
  #
3073
  #
 
3123
 
3124
  with gr.Row():
3125
 
3126
+ refining_number_of_iterations_for_online_config_field_visible = False
3127
+
3128
+ if default_model_configuration in model_configuration_include_refiner_number_of_steps_object:
3129
+
3130
+ refining_number_of_iterations_for_online_config_field_visible = True
3131
+
3132
  refining_number_of_iterations_for_online_config_field = gr.Slider(
3133
  label = "Refiner number of iterations",
3134
  minimum = 1,
3135
  maximum = 100,
3136
  value = 100,
3137
+ step = 1,
3138
+ visible = refining_number_of_iterations_for_online_config_field_visible
3139
  )
3140
 
3141
  with gr.Group(
 
3306
 
3307
  with gr.Column(scale = 1):
3308
 
 
 
 
 
 
 
 
3309
  with gr.Row():
3310
 
3311
  if use_image_gallery == 1:
 
3337
 
3338
  with gr.Row():
3339
 
3340
+ output_text_field = gr.Textbox(
3341
  label = "Prompt Information:",
3342
  value = "After an image is generated, its generation information will appear here." + additional_prompt_info_html,
3343
  show_copy_button = True,
3344
+ lines = 10,
3345
+ max_lines = 20,
3346
+ every = None#,
3347
+ #container = False
3348
  )
3349
 
3350
  with gr.Row():
3351
 
3352
+ log_text_field = gr.Textbox(
3353
+ label = "Generation Progress:",
3354
+
3355
+ elem_id = "generation_progress_id",
3356
+ elem_classes = "",
3357
+
3358
+ interactive = False,
3359
  value = "",
3360
+ show_copy_button = False,
3361
  visible = False
3362
  )
3363
 
3364
+ with gr.Row():
3365
+
3366
+ prompt_truncated_field = gr.HTML(
3367
+ value = "",
3368
+ visible = False
3369
+ )
3370
 
3371
  if enable_close_command_prompt_button == 1:
3372
 
 
3377
 
3378
  gr.Markdown("Closing the command prompt will cancel any images in the process of being created. You will need to launch it again to create more images.")
3379
 
3380
+
3381
+
3382
  if len(ending_html) > 0:
3383
 
3384
  with gr.Accordion(
 
3424
  refiner_online_config_accordion,
3425
  refining_selection_automatically_selected_message_field,
3426
  refining_selection_online_config_normal_field,
3427
+ refining_selection_online_config_automatically_selected_field,
3428
+ refining_number_of_iterations_for_online_config_field
3429
  ],
3430
  queue = None,
3431
  show_progress = "hidden"
 
3439
  outputs = [
3440
  output_image_field,
3441
  output_text_field
3442
+ ],
3443
+ show_progress = "hidden"
3444
  )
3445
 
3446
  if (
 
3455
  triggers_array.extend([
3456
  refining_selection_default_config_field.change,
3457
  refining_selection_online_config_normal_field.change,
3458
+ refining_selection_online_config_automatically_selected_field.change,
3459
+ model_configuration_field.change
3460
  ])
3461
 
3462
  if enable_upscaler == 1:
 
3484
  )
3485
 
3486
  generate_image_btn_click_event = generate_image_btn.click(
3487
+ fn = before_create_image_function,
3488
+ inputs = [],
3489
+ outputs = [
3490
+ output_image_field,
3491
+ output_text_field,
3492
+ log_text_field,
3493
+ generate_image_btn
3494
+ ],
3495
+ show_progress = "minimal",
3496
+ queue = True
3497
+ ).then(
3498
  fn = create_image_function,
3499
  inputs = [
3500
  base_model_field,
 
3508
  base_model_num_inference_steps_field_for_sdxl_turbo_field,
3509
  seed_field,
3510
 
3511
+ refining_selection_default_config_field,
3512
  refining_selection_online_config_normal_field,
3513
  refining_selection_online_config_automatically_selected_field,
3514
 
3515
+ refining_denoise_start_for_default_config_field,
3516
  refining_use_denoising_start_in_base_model_when_using_refiner_field,
3517
  refining_base_model_output_to_refiner_is_in_latent_space_field,
3518
 
 
3526
  output_image_field,
3527
  output_text_field,
3528
  prompt_truncated_field
3529
+ ],
3530
+ queue = True
3531
+ ).then(
3532
+ fn = after_create_image_function,
3533
+ inputs = [],
3534
+ outputs = [
3535
+ output_text_field,
3536
+ log_text_field,
3537
+ generate_image_btn
3538
+ ],
3539
+ queue = False
3540
  )
3541
 
3542
+
3543
+
3544
+ sd_interface_load_kwargs = {
3545
+ "scroll_to_output": False,
3546
+ "show_progress": "full"
3547
+ }
3548
+
3549
+ if show_image_creation_progress_log == 1:
3550
+
3551
+ sd_interface_continuous = sd_interface.load(
3552
+ fn = update_log_progress,
3553
+ inputs = None,
3554
+ outputs = [
3555
+ log_text_field
3556
+ ],
3557
+ every = 1,
3558
+ **sd_interface_load_kwargs
3559
+ )
3560
+
3561
+ else:
3562
+
3563
+ sd_interface_continuous = sd_interface.load(
3564
+ **sd_interface_load_kwargs
3565
+ )
3566
+
3567
+
3568
+
3569
  if enable_close_command_prompt_button == 1:
3570
 
3571
  # https://github.com/gradio-app/gradio/pull/2433/files
 
3580
 
3581
 
3582
  sd_interface.queue(
 
3583
  max_size = 20
3584
  )
3585
 
 
3598
  show_error = True,
3599
  max_threads = 1
3600
  )