import torch #needed only for GPU from PIL import Image from io import BytesIO import numpy as np from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionUpscalePipeline import gradio as gr import modin.pandas as pd # load model for CPU or GPU model_2x = "stabilityai/sd-x2-latent-upscaler" model_4x = "stabilityai/stable-diffusion-x4-upscaler" device = "cuda" if torch.cuda.is_available() else "cpu" upscaler2x = StableDiffusionLatentUpscalePipeline.from_pretrained(model_2x, torch_dtype=torch.float16) if torch.cuda.is_available() else StableDiffusionLatentUpscalePipeline.from_pretrained(model_2x) upscaler4x = StableDiffusionUpscalePipeline.from_pretrained(model_4x, torch_dtype=torch.float16, revision="fp16") if torch.cuda.is_available() else StableDiffusionUpscalePipeline.from_pretrained(model_4x) upscaler2x = upscaler2x.to(device) upscaler4x = upscaler4x.to(device) #define interface def upscale(raw_img, model, prompt, negative_prompt, scale, steps, Seed): generator = torch.manual_seed(Seed) raw_img = Image.open(raw_img).convert("RGB") if model == "Upscaler 4x": low_res_img = raw_img.resize((128, 128)) upscaled_image = upscaler4x(prompt=prompt, negative_prompt=negative_prompt, image=low_res_img, guidance_scale=scale, num_inference_steps=steps).images[0] else: upscaled_image = upscaler2x(prompt=prompt, negative_prompt=negative_prompt, image=raw_img, guidance_scale=scale, num_inference_steps=steps).images[0] return upscaled_image #launch interface gr.Interface(fn=upscale, inputs=[ gr.Image(type="filepath", label='Lower Resolution Image'), gr.Radio(['Upscaler 2x','Upscaler 4x'], label="Models"), gr.Textbox(label="Optional: Enter a Prompt to Guide the AI's Enhancement, this can have an Img2Img Effect"), gr.Textbox(label='Experimental: Influence What you do not want the AI to Enhance. Such as Blur, Smudges, or Pixels'), gr.Slider(1, 15, 1, step=1, label='Guidance Scale: How much the AI influences the Upscaling.'), gr.Slider(5, 50, 5, step=1, label='Number of Iterations'), gr.Slider(minimum=1, maximum=999999999999999999, randomize=True, step=1)], outputs=gr.Image(type="filepath", label = 'Upscaled Image'), title='SD Upscaler', description='2x Latent Upscaler using SD 2.0 And 4x Upscaler using SD 2.1. This version runs on CPU or GPU and is currently running on a T4 GPU. For 4x Upscaling use images lower than 512x512, ideally 128x128 or smaller for 512x512 output. For 2x Upscaling use up to 512x512 images for 1024x1024 output.

Notice: Largest Accepted Resolution is 512x512', article = "Code Monkey: Manjushri").launch(max_threads=True, debug=True)