import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.cuda.is_available():
PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000}
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
#torch.cuda.empty_cache()
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
#torch.cuda.empty_cache()
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
upscaler.enable_xformers_memory_efficient_attention()
upscaler = upscaler.to(device)
upscaler.unet = torch.compile(upscaler.unet, mode="reduce-overhead", fullgraph=True)
#torch.cuda.empty_cache()
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
pipe = pipe.to(device)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True)
refiner = refiner.to(device)
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
n_steps = 40
high_noise_frac = 0.8
def genie (prompt, negative_prompt, height, width, scale, steps, seed, upscaling, prompt_2, negative_prompt_2):
generator = torch.Generator(device=device).manual_seed(seed)
int_image = pipe(prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, num_inference_steps=steps, height=height, width=width, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images
if upscaling == 'Yes':
image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image).images[0]
upscaled = upscaler(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0]
#torch.cuda.empty_cache()
return (image, upscaled)
else:
image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image).images[0]
#torch.cuda.empty_cache()
return (image, image)
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit. A Token is Any Word, Number, Symbol, or Punctuation. Everything Over 77 Will Be Truncated!'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1024, 768, step=128, label='Height'),
gr.Slider(512, 1024, 768, step=128, label='Width'),
gr.Slider(1, 15, 10, step=.25, label='Guidance Scale: How Closely the AI follows the Prompt'),
gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'),
gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True, label='Seed'),
gr.Radio(['Yes', 'No'], value='No', label='Upscale?'),
gr.Textbox(label='Embedded Prompt'),
gr.Textbox(label='Embedded Negative Prompt')],
outputs=['image', 'image'],
title="Stable Diffusion XL 1.0 GPU",
description="SDXL 1.0 GPU.
WARNING: Capable of producing NSFW (Softcore) images.",
article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets.
BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84
3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP
DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez
SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891
PayPal: https://www.paypal.me/ManjushriBodhisattva
ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891
Code Monkey: Manjushri").launch(debug=True, max_threads=80)