File size: 7,892 Bytes
f1846be 164cb45 a746976 164cb45 a746976 164cb45 4ebac20 164cb45 a746976 164cb45 4ebac20 164cb45 4ebac20 164cb45 4ebac20 164cb45 4ebac20 164cb45 4ebac20 164cb45 4ebac20 a746976 4ebac20 a746976 4ebac20 a746976 4ebac20 a746976 4ebac20 a746976 4ebac20 a746976 4ebac20 a746976 4ebac20 a746976 4ebac20 a746976 4ebac20 a746976 4ebac20 a746976 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import torch
import dash
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import plotly.express as px
def z_score(y, mean=.04853076, sd=.9409466):
return (y - mean) / sd
def indicator_plot(value, title, value_range, domain):
plot = go.Indicator(
mode = "gauge+delta",
value = value,
domain = domain,
title = title,
delta = {
'reference': 0,
'decreasing': {'color': "#ec4899"},
'increasing': {'color': "#36def1"}
},
gauge = {
'axis': {'range': value_range, 'tickwidth': 1, 'tickcolor': "black"},
'bar': {'color': "#4361ee"},
'bgcolor': "white",
'borderwidth': 2,
'bordercolor': "#efefef",
'steps': [
{'range': [value_range[0], 0], 'color': '#efefef'},
{'range': [0, value_range[1]], 'color': '#efefef'}
],
'threshold': {
'line': {'color': "#4361ee", 'width': 8},
'thickness': 0.75,
'value': value
}
}
)
return plot
def scatter_plot(df, group_var):
colors = ['#36def1', '#4361ee'] if group_var else ['#4361ee']
plot = px.scatter(
df,
x='Machine-ratings',
y='Human-ratings',
color=group_var,
facet_col='x_group',
facet_col_wrap=2,
trendline='ols',
trendline_scope='trace',
hover_data={
'Text': df.text,
'Language': False,
'x_group': False,
'Human-ratings': ':.2f',
'Machine-ratings': ':.2f',
'Study': df.study,
'Instrument': df.instrument,
},
width=400,
height=400,
color_discrete_sequence=colors
)
plot.for_each_annotation(lambda a: a.update(text=a.text.split('=')[-1]))
plot.update_layout(
legend={
'orientation':'h',
'yanchor': 'bottom',
'y': -.30
})
plot.update_xaxes(title_standoff = 0)
return plot
# data import and wrangling
covariate_columns = {
'content_domain': 'Content Domain',
'language': 'Language',
'rater_group': 'Rater Group',
}
df = (
pd
.read_feather(path='data.feather').query('partition == "test" | partition == "dev"')
.melt(
value_vars=['sentiment_model', 'desirability_model'],
var_name='x_group',
value_name='x',
id_vars=['mean_z', 'text', 'content_domain', 'language', 'rater_group', 'study', 'instrument']
)
.replace(
to_replace={
'en': 'English',
'de': 'German',
'other': 'Other',
'personality': 'Personality',
'laypeople': 'Laypeople',
'students': 'Students',
'sentiment_model': 'Sentiment Model',
'desirability_model': 'Desirability Model'
}
)
.rename(columns=covariate_columns)
.rename(
columns={
'mean_z': 'Human-ratings',
'x': 'Machine-ratings',
}
)
)
st.markdown("""
# NLP for Item Desirability Ratings
This web application accompanies the paper "*Expanding the Methodological Toolbox: Machine-Based Item Desirability Ratings as an Alternative to Human-Based Ratings*".
## What is this research about?
Researchers use personality scales to measure people's traits and behaviors, but biases can affect the accuracy of these scales.
Socially desirable responding is a common bias that can skew results. To overcome this, researchers gather item desirability ratings, e.g., to ensure that questions are neutral.
Recently, advancements in natural language processing have made it possible to use machines to estimate social desirability ratings,
which can provide a viable alternative to human ratings and help researchers, scale developers, and practitioners improve the accuracy of personality scales.
""")
# demo
st.markdown("""
## Try it yourself!
Use the text field below to enter a statement that might be part of a psychological questionnaire (e.g., "I love a good fight.").
The left dial indicates how socially desirable it might be to endorse this item.
The right dial indicates sentiment (i.e., valence) as estimated by regular sentiment analysis (using the `cardiffnlp/twitter-xlm-roberta-base-sentiment` model).
""")
## desirability model
with st.spinner('Processing...'):
if os.environ.get('item-desirability'):
model_path = 'magnolia-psychometrics/item-desirability'
else:
model_path = '/nlp/nlp/models/finetuned/twitter-xlm-roberta-base-regressive-desirability-ft-4'
auth_token = os.environ.get('item-desirability') or True
if 'tokenizer' not in globals():
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=model_path,
use_fast=True,
use_auth_token=auth_token
)
if 'model' not in globals():
model = AutoModelForSequenceClassification.from_pretrained(
pretrained_model_name_or_path=model_path,
num_labels=1,
ignore_mismatched_sizes=True,
use_auth_token=auth_token
)
## sentiment model
if 'classifier' not in globals():
sentiment_model = 'cardiffnlp/twitter-xlm-roberta-base-sentiment'
classifier = pipeline("sentiment-analysis", model=sentiment_model, tokenizer=sentiment_model, use_fast=False, top_k=3)
input_text = st.text_input(
label='Estimate item desirability:',
value='I love a good fight.',
placeholder='Enter item text'
)
if input_text:
classifier_output = classifier(input_text)
classifier_output_dict = {x['label']: x['score'] for x in classifier_output[0]}
classifier_score = classifier_output_dict['positive'] - classifier_output_dict['negative']
inputs = tokenizer(input_text, padding=True, return_tensors='pt')
with torch.no_grad():
score = model(**inputs).logits.squeeze().tolist()
z = z_score(score)
p1 = indicator_plot(
value=classifier_score,
title=f'Item Sentiment',
value_range=[-1, 1],
domain={'x': [.55, 1], 'y': [0, 1]}
)
p2 = indicator_plot(
value=z,
title=f'Item Desirability',
value_range=[-4, 4],
domain={'x': [0, .45], 'y': [0, 1]},
)
fig = go.Figure()
fig.add_trace(p1)
fig.add_trace(p2)
fig.update_layout(
title=dict(text=f'"{input_text}"', font=dict(size=36),yref='paper'),
paper_bgcolor = "white",
font = {'color': "black", 'family': "Arial"})
st.plotly_chart(fig, theme=None, use_container_width=True)
st.markdown("""
Item sentiment: Absolute differences between positive and negative sentiment.
Item desirability: z-transformed values, 0 indicated "neutral".
""")
## plot
st.markdown("""
## Explore the data
Figures show the accuarcy in precitions of human-rated item desirability by the sentiment model (left) and the desirability model (right), using `test`-partition data only.
""")
show_covariates = st.checkbox('Show covariates', value=True)
if show_covariates:
option = st.selectbox('Group by', options=list(covariate_columns.values()))
else:
option = None
plot = scatter_plot(df, option)
st.plotly_chart(plot, theme=None, use_container_width=True) |