bjorn-hommel
commited on
Commit
•
021a052
1
Parent(s):
e011d51
minor fixes
Browse files
app.py
CHANGED
@@ -82,7 +82,7 @@ def get_user_info():
|
|
82 |
gender_value = gender_options.index(gender_input)
|
83 |
|
84 |
expert_options = [
|
85 |
-
'[
|
86 |
'No, I do not have a background in social or behavioral sciences',
|
87 |
'Yes, I have either studied social or behavioral sciences or I am currently a student in this field',
|
88 |
'Yes, I have either worked as a researcher in the field of social or behavioral sciences or I have had past experience as a researcher in this area'
|
@@ -261,7 +261,9 @@ def show_data(placeholder):
|
|
261 |
st.divider()
|
262 |
st.markdown("""
|
263 |
## Explore the data
|
264 |
-
Figures show the accuarcy in precitions of human-rated item desirability by
|
|
|
|
|
265 |
""")
|
266 |
|
267 |
show_covariates = st.checkbox('Show covariates', value=True)
|
@@ -270,19 +272,22 @@ def show_data(placeholder):
|
|
270 |
else:
|
271 |
option = None
|
272 |
|
273 |
-
if 'df' in st.session_state:
|
274 |
-
|
275 |
-
|
|
|
|
|
276 |
|
277 |
def main():
|
278 |
st.markdown("""
|
279 |
# Machine-Based Item Desirability Ratings
|
280 |
-
This web application demonstrates how item desirability ratings can be obtained with natural language processing ("AI") and
|
281 |
|
282 |
*Hommel, B. E. (2023). Expanding the methodological toolbox: Machine-based item desirability ratings as an alternative to human-based ratings. Personality and Individual Differences, 213, 112307. https://doi.org/10.1016/j.paid.2023.112307*
|
283 |
|
284 |
<small>https://www.magnolia-psychometrics.com/</small>
|
285 |
""", unsafe_allow_html=True)
|
|
|
286 |
placeholder_launch = st.empty()
|
287 |
placeholder_summary = st.empty()
|
288 |
placeholder_demo = st.empty()
|
|
|
82 |
gender_value = gender_options.index(gender_input)
|
83 |
|
84 |
expert_options = [
|
85 |
+
'[Please select]',
|
86 |
'No, I do not have a background in social or behavioral sciences',
|
87 |
'Yes, I have either studied social or behavioral sciences or I am currently a student in this field',
|
88 |
'Yes, I have either worked as a researcher in the field of social or behavioral sciences or I have had past experience as a researcher in this area'
|
|
|
261 |
st.divider()
|
262 |
st.markdown("""
|
263 |
## Explore the data
|
264 |
+
Figures show the accuarcy in precitions of human-rated item desirability by
|
265 |
+
the sentiment model (left) and the desirability model (right), using
|
266 |
+
`test`-partition data only.
|
267 |
""")
|
268 |
|
269 |
show_covariates = st.checkbox('Show covariates', value=True)
|
|
|
272 |
else:
|
273 |
option = None
|
274 |
|
275 |
+
if 'df' not in st.session_state:
|
276 |
+
utils.load_data()
|
277 |
+
|
278 |
+
plot = plots.scatter_plot(st.session_state.df, option)
|
279 |
+
st.plotly_chart(plot, theme=None, use_container_width=True)
|
280 |
|
281 |
def main():
|
282 |
st.markdown("""
|
283 |
# Machine-Based Item Desirability Ratings
|
284 |
+
This web application demonstrates how item desirability ratings can be obtained with natural language processing ("AI"), and accompanying the paper "*Expanding the Methodological Toolbox: Machine-Based Item Desirability Ratings as an Alternative to Human-Based Ratings*".
|
285 |
|
286 |
*Hommel, B. E. (2023). Expanding the methodological toolbox: Machine-based item desirability ratings as an alternative to human-based ratings. Personality and Individual Differences, 213, 112307. https://doi.org/10.1016/j.paid.2023.112307*
|
287 |
|
288 |
<small>https://www.magnolia-psychometrics.com/</small>
|
289 |
""", unsafe_allow_html=True)
|
290 |
+
|
291 |
placeholder_launch = st.empty()
|
292 |
placeholder_summary = st.empty()
|
293 |
placeholder_demo = st.empty()
|
utils.py
CHANGED
@@ -12,7 +12,7 @@ id_vars = [
|
|
12 |
'rater_group', 'study', 'instrument'
|
13 |
]
|
14 |
|
15 |
-
|
16 |
st.session_state.df = (
|
17 |
pd
|
18 |
.read_feather(path='data.feather')
|
|
|
12 |
'rater_group', 'study', 'instrument'
|
13 |
]
|
14 |
|
15 |
+
def load_data():
|
16 |
st.session_state.df = (
|
17 |
pd
|
18 |
.read_feather(path='data.feather')
|