Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import re | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel, Trainer, TrainingArguments | |
from torch.utils.data import DataLoader, Dataset | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# device = torch.device('cpu') | |
def remove_java_comments(code): | |
# Remove single-line comments (//) | |
code = re.sub(r'//.*', '', code) | |
# Remove multi-line comments (/* ... */) | |
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL) | |
return code | |
def remove_python_comments(code): | |
# Remove single-line comments (#) | |
code = re.sub(r'#.*', '', code) | |
# Remove multi-line comments (""" ... """ or ''' ... ''') | |
code = re.sub(r'""".*?"""', '', code, flags=re.DOTALL) | |
code = re.sub(r"'''.*?'''", '', code, flags=re.DOTALL) | |
return code | |
# Model with Binary Classifier | |
class CodeBERTBinaryClassifier(nn.Module): | |
def __init__(self, encoder_model, hidden_size=256, num_layers=2): | |
super(CodeBERTBinaryClassifier, self).__init__() | |
self.encoder = encoder_model | |
self.classifier = nn.Sequential( | |
nn.Dropout(0.3), # Dropout with 30% | |
nn.Linear(self.encoder.config.hidden_size, 128), # Hidden layer with 128 units | |
nn.BatchNorm1d(128), # Batch normalization for the hidden layer | |
nn.ReLU(), # ReLU activation for the hidden layer | |
nn.Dropout(0.3), # Dropout with 30% | |
nn.Linear(128, 1) # Output layer with 1 unit | |
) | |
def forward(self, input_ids, attention_mask): | |
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask) | |
cls_output = outputs.last_hidden_state[:, 0, :] # [CLS] token representation | |
logits = self.classifier(cls_output.detach()).squeeze(-1) # Squeeze for binary logit | |
return logits, cls_output | |
def infer_single_sample(code_text, model, tokenizer, language='java'): | |
# Ensure model is in evaluation mode | |
model.eval() | |
# Remove comments from the code (assuming the same preprocessing as during training) | |
if language == 'python': | |
code_text = remove_python_comments(code_text) | |
else: | |
code_text = remove_java_comments(code_text) | |
# print(code_text) | |
# Tokenize the input | |
inputs = tokenizer.encode_plus( | |
code_text, | |
padding='max_length', | |
max_length=512, | |
truncation=True, | |
return_tensors='pt' | |
) | |
# Move inputs to the specified device | |
input_ids = inputs['input_ids'].to(device) | |
attention_mask = inputs['attention_mask'].to(device) | |
# Disable gradient computation for inference | |
with torch.no_grad(): | |
# Get model prediction | |
logits, _ = model(input_ids, attention_mask) | |
# Apply sigmoid to get probability | |
probability = torch.sigmoid(logits).cpu().item() | |
# Classify based on 0.5 threshold | |
predicted_label = 1 if probability > 0.5 else 0 | |
return { | |
'probability': probability, | |
'predicted_label': predicted_label, | |
'interpretation': 'GPT-generated' if predicted_label == 0 else 'Human-written' | |
} | |
def load_model_and_tokenizer(model_architecture, model_path): | |
tokenizer = AutoTokenizer.from_pretrained(model_architecture) | |
base_model = AutoModel.from_pretrained(model_architecture) | |
model = CodeBERTBinaryClassifier(base_model) | |
# model = model.to(device) | |
map_location = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.load_state_dict(torch.load(model_path, map_location=map_location)) | |
model = model.to(map_location) | |
return model, tokenizer | |