import gradio as gr from transformers import pipeline # Load the summarization model summarizer = pipeline(task="summarization", model="sshleifer/distilbart-cnn-12-6") # Function to summarize input text def summarize(input, min_length, max_length): output = summarizer(input, min_length = min_length, max_length = max_length) return output[0]['summary_text'] # Create the Gradio interface SUMMARIZER = gr.Interface( fn=summarize, inputs=[gr.Textbox(label='Text to summarize', lines=6), gr.Slider(label='Min Length', minimum=10, maximum=50, value=10), gr.Slider(label='Max Length', minimum=50, maximum=200, value=100)], outputs=[gr.Textbox(label='Result', lines=3)], allow_flagging='never' ) # Add Markdown content markdown_content_summarizer = gr.Markdown( """