Spaces:
Sleeping
Sleeping
mahmudunnabi
commited on
Upload 2 files
Browse files- app.py +32 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers.utils import logging
|
3 |
+
from transformers import BlipForQuestionAnswering, AutoProcessor
|
4 |
+
from PIL import Image
|
5 |
+
logging.set_verbosity_error()
|
6 |
+
|
7 |
+
# Load the model and processor
|
8 |
+
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
9 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
10 |
+
|
11 |
+
# Define a function to process inputs and generate outputs
|
12 |
+
def predict(image, question):
|
13 |
+
inputs = processor(image, question, return_tensors="pt")
|
14 |
+
out = model.generate(**inputs)
|
15 |
+
answer = processor.decode(out[0], skip_special_tokens=True)
|
16 |
+
return answer
|
17 |
+
|
18 |
+
# Create the Gradio interface with custom Markdown and HTML formatting
|
19 |
+
demo = gr.Interface(
|
20 |
+
fn=predict,
|
21 |
+
inputs=[
|
22 |
+
gr.Image(type="pil", label="Upload Image"),
|
23 |
+
gr.Textbox(label="Question", placeholder="Ask a question about the image")
|
24 |
+
],
|
25 |
+
outputs=gr.Textbox(label="Answer"),
|
26 |
+
description="<h1 style='text-align: center; font-family: Times New Roman;'>Visual Question Answering</h1> \
|
27 |
+
<p style='text-align: center; font-family: Times New Roman;'><strong>Model name:</strong> Salesforce/blip-vqa-base</p> \
|
28 |
+
<p style='text-align: center; font-family: Times New Roman;'><strong>Made by:</strong> MD MAHMUDUN NABI</p>"
|
29 |
+
)
|
30 |
+
|
31 |
+
# Launch the Gradio interface
|
32 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
pillow
|