Spaces:
Sleeping
Sleeping
samsonleegh
commited on
Upload 7 files
Browse files- main.py +212 -0
- requirements.txt +13 -0
- vectordb/default__vector_store.json +0 -0
- vectordb/docstore.json +0 -0
- vectordb/graph_store.json +1 -0
- vectordb/image__vector_store.json +1 -0
- vectordb/index_store.json +1 -0
main.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import chromadb
|
2 |
+
from llama_index.core.base.embeddings.base import similarity
|
3 |
+
#from llama_index.llms.ollama import Ollama
|
4 |
+
from llama_index.llms.groq import Groq
|
5 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, DocumentSummaryIndex
|
6 |
+
from llama_index.core import StorageContext, get_response_synthesizer
|
7 |
+
from llama_index.core.retrievers import VectorIndexRetriever
|
8 |
+
from llama_index.core.query_engine import RetrieverQueryEngine
|
9 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
10 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
11 |
+
from llama_index.core import load_index_from_storage
|
12 |
+
import os
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler, CBEventType
|
15 |
+
from llama_index.core.node_parser import SentenceSplitter
|
16 |
+
from llama_index.core.postprocessor import SimilarityPostprocessor
|
17 |
+
import time
|
18 |
+
import gradio as gr
|
19 |
+
from llama_index.core.memory import ChatMemoryBuffer
|
20 |
+
from llama_parse import LlamaParse
|
21 |
+
from llama_index.core import PromptTemplate
|
22 |
+
from llama_index.core.llms import ChatMessage, MessageRole
|
23 |
+
from llama_index.core.chat_engine import CondenseQuestionChatEngine
|
24 |
+
|
25 |
+
|
26 |
+
load_dotenv()
|
27 |
+
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
28 |
+
LLAMAINDEX_API_KEY = os.getenv('LLAMAINDEX_API_KEY')
|
29 |
+
|
30 |
+
# set up callback manager
|
31 |
+
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
|
32 |
+
callback_manager = CallbackManager([llama_debug])
|
33 |
+
Settings.callback_manager = callback_manager
|
34 |
+
|
35 |
+
# set up LLM
|
36 |
+
llm = Groq(model="llama3-70b-8192")#"llama3-8b-8192")
|
37 |
+
Settings.llm = llm
|
38 |
+
|
39 |
+
# set up embedding model
|
40 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
41 |
+
Settings.embed_model = embed_model
|
42 |
+
|
43 |
+
# create splitter
|
44 |
+
splitter = SentenceSplitter(chunk_size=2048, chunk_overlap=50)
|
45 |
+
Settings.transformations = [splitter]
|
46 |
+
|
47 |
+
# create parser
|
48 |
+
parser = LlamaParse(
|
49 |
+
api_key=LLAMAINDEX_API_KEY,
|
50 |
+
result_type="markdown", # "markdown" and "text" are available
|
51 |
+
verbose=True,
|
52 |
+
)
|
53 |
+
|
54 |
+
#create index
|
55 |
+
if os.path.exists("./vectordb"):
|
56 |
+
print("Index Exists!")
|
57 |
+
storage_context = StorageContext.from_defaults(persist_dir="./vectordb")
|
58 |
+
index = load_index_from_storage(storage_context)
|
59 |
+
else:
|
60 |
+
filename_fn = lambda filename: {"file_name": filename}
|
61 |
+
required_exts = [".pdf",".docx"]
|
62 |
+
file_extractor = {".pdf": parser}
|
63 |
+
reader = SimpleDirectoryReader(
|
64 |
+
input_dir="./data",
|
65 |
+
file_extractor=file_extractor,
|
66 |
+
required_exts=required_exts,
|
67 |
+
recursive=True,
|
68 |
+
file_metadata=filename_fn
|
69 |
+
)
|
70 |
+
documents = reader.load_data()
|
71 |
+
print("index creating with `%d` documents", len(documents))
|
72 |
+
index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, transformations=[splitter])
|
73 |
+
index.storage_context.persist(persist_dir="./vectordb")
|
74 |
+
|
75 |
+
"""
|
76 |
+
#create document summary index
|
77 |
+
if os.path.exists("./docsummarydb"):
|
78 |
+
print("Index Exists!")
|
79 |
+
storage_context = StorageContext.from_defaults(persist_dir="./docsummarydb")
|
80 |
+
doc_index = load_index_from_storage(storage_context)
|
81 |
+
else:
|
82 |
+
filename_fn = lambda filename: {"file_name": filename}
|
83 |
+
required_exts = [".pdf",".docx"]
|
84 |
+
reader = SimpleDirectoryReader(
|
85 |
+
input_dir="./data",
|
86 |
+
required_exts=required_exts,
|
87 |
+
recursive=True,
|
88 |
+
file_metadata=filename_fn
|
89 |
+
)
|
90 |
+
documents = reader.load_data()
|
91 |
+
print("index creating with `%d` documents", len(documents))
|
92 |
+
|
93 |
+
response_synthesizer = get_response_synthesizer(
|
94 |
+
response_mode="tree_summarize", use_async=True
|
95 |
+
)
|
96 |
+
doc_index = DocumentSummaryIndex.from_documents(
|
97 |
+
documents,
|
98 |
+
llm = llm,
|
99 |
+
transformations = [splitter],
|
100 |
+
response_synthesizer = response_synthesizer,
|
101 |
+
show_progress = True
|
102 |
+
)
|
103 |
+
doc_index.storage_context.persist(persist_dir="./docsummarydb")
|
104 |
+
"""
|
105 |
+
"""
|
106 |
+
retriever = DocumentSummaryIndexEmbeddingRetriever(
|
107 |
+
doc_index,
|
108 |
+
similarity_top_k=5,
|
109 |
+
)
|
110 |
+
"""
|
111 |
+
|
112 |
+
# set up retriever
|
113 |
+
retriever = VectorIndexRetriever(
|
114 |
+
index = index,
|
115 |
+
similarity_top_k = 10,
|
116 |
+
#vector_store_query_mode="mmr",
|
117 |
+
#vector_store_kwargs={"mmr_threshold": 0.4}
|
118 |
+
)
|
119 |
+
|
120 |
+
# set up response synthesizer
|
121 |
+
response_synthesizer = get_response_synthesizer()
|
122 |
+
|
123 |
+
### customising prompts worsened the result###
|
124 |
+
"""
|
125 |
+
# set up prompt template
|
126 |
+
qa_prompt_tmpl = (
|
127 |
+
"Context information from multiple sources is below.\n"
|
128 |
+
"---------------------\n"
|
129 |
+
"{context_str}\n"
|
130 |
+
"---------------------\n"
|
131 |
+
"Given the information from multiple sources and not prior knowledge, "
|
132 |
+
"answer the query.\n"
|
133 |
+
"Query: {query_str}\n"
|
134 |
+
"Answer: "
|
135 |
+
)
|
136 |
+
qa_prompt = PromptTemplate(qa_prompt_tmpl)
|
137 |
+
"""
|
138 |
+
# setting up query engine
|
139 |
+
query_engine = RetrieverQueryEngine(
|
140 |
+
retriever = retriever,
|
141 |
+
node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.53)],
|
142 |
+
response_synthesizer=get_response_synthesizer(response_mode="tree_summarize",verbose=True)
|
143 |
+
)
|
144 |
+
print(query_engine.get_prompts())
|
145 |
+
|
146 |
+
#response = query_engine.query("What happens if the distributor wants its own warehouse for pizzahood?")
|
147 |
+
#print(response)
|
148 |
+
|
149 |
+
|
150 |
+
memory = ChatMemoryBuffer.from_defaults(token_limit=10000)
|
151 |
+
|
152 |
+
custom_prompt = PromptTemplate(
|
153 |
+
"""\
|
154 |
+
Given a conversation (between Human and Assistant) and a follow up message from Human, \
|
155 |
+
rewrite the message to be a standalone question that captures all relevant context \
|
156 |
+
from the conversation. If you are unsure, ask for more information.
|
157 |
+
|
158 |
+
<Chat History>
|
159 |
+
{chat_history}
|
160 |
+
|
161 |
+
<Follow Up Message>
|
162 |
+
{question}
|
163 |
+
|
164 |
+
<Standalone question>
|
165 |
+
"""
|
166 |
+
)
|
167 |
+
|
168 |
+
# list of `ChatMessage` objects
|
169 |
+
custom_chat_history = [
|
170 |
+
ChatMessage(
|
171 |
+
role=MessageRole.USER,
|
172 |
+
content="Hello assistant.",
|
173 |
+
),
|
174 |
+
ChatMessage(role=MessageRole.ASSISTANT, content="Hello user."),
|
175 |
+
]
|
176 |
+
|
177 |
+
chat_engine = CondenseQuestionChatEngine.from_defaults(
|
178 |
+
query_engine=query_engine,
|
179 |
+
condense_question_prompt=custom_prompt,
|
180 |
+
chat_history=custom_chat_history,
|
181 |
+
verbose=True,
|
182 |
+
memory=memory
|
183 |
+
)
|
184 |
+
|
185 |
+
|
186 |
+
# gradio with streaming support
|
187 |
+
with gr.Blocks() as demo:
|
188 |
+
chat_engine = chat_engine
|
189 |
+
chatbot = gr.Chatbot()
|
190 |
+
msg = gr.Textbox(label="⏎ for sending",
|
191 |
+
placeholder="Ask me something",)
|
192 |
+
clear = gr.Button("Delete")
|
193 |
+
|
194 |
+
def user(user_message, history):
|
195 |
+
return "", history + [[user_message, None]]
|
196 |
+
|
197 |
+
def bot(history):
|
198 |
+
user_message = history[-1][0]
|
199 |
+
#bot_message = chat_engine.chat(user_message)
|
200 |
+
bot_message = query_engine.query(user_message + "Let's think step by step to get the correct answer. If you cannot provide an answer, say you don't know.")
|
201 |
+
history[-1][1] = ""
|
202 |
+
for character in bot_message.response:
|
203 |
+
history[-1][1] += character
|
204 |
+
time.sleep(0.01)
|
205 |
+
yield history
|
206 |
+
|
207 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
208 |
+
bot, chatbot, chatbot
|
209 |
+
)
|
210 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
211 |
+
# demo.queue()
|
212 |
+
demo.launch(share=False)
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
docx2txt
|
2 |
+
python-pptx
|
3 |
+
torch
|
4 |
+
pillow
|
5 |
+
llama-index
|
6 |
+
llama-index-llms-ollama
|
7 |
+
llama-index-llms-groq
|
8 |
+
llama-index-embeddings-huggingface
|
9 |
+
llama-index-vector-stores-chroma
|
10 |
+
llama-parse
|
11 |
+
streamlit
|
12 |
+
gradio
|
13 |
+
groq
|
vectordb/default__vector_store.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vectordb/docstore.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vectordb/graph_store.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"graph_dict": {}}
|
vectordb/image__vector_store.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"embedding_dict": {}, "text_id_to_ref_doc_id": {}, "metadata_dict": {}}
|
vectordb/index_store.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"index_store/data": {"48f6023d-a0ad-42af-9a1b-61eb7b03baae": {"__type__": "vector_store", "__data__": "{\"index_id\": \"48f6023d-a0ad-42af-9a1b-61eb7b03baae\", \"summary\": null, \"nodes_dict\": {\"a3c26284-67c9-40a2-aca1-195c66f5ed3b\": \"a3c26284-67c9-40a2-aca1-195c66f5ed3b\", \"4b6e6913-3a74-46e5-93c0-fc960b1c029e\": \"4b6e6913-3a74-46e5-93c0-fc960b1c029e\", \"8438e420-d1ae-486d-aa3e-1b5845afe94b\": \"8438e420-d1ae-486d-aa3e-1b5845afe94b\", \"203991ea-aba5-4fba-b64c-3ce587ad56fe\": \"203991ea-aba5-4fba-b64c-3ce587ad56fe\", \"656a90d5-7ee7-4208-a427-e93827afc069\": \"656a90d5-7ee7-4208-a427-e93827afc069\", \"8906902c-cbc4-454c-b099-9d7d6c35377e\": \"8906902c-cbc4-454c-b099-9d7d6c35377e\", \"4b10db88-e5a4-490a-9b71-86bc3af4ece0\": \"4b10db88-e5a4-490a-9b71-86bc3af4ece0\", \"efc003b2-8c76-4b94-aeb5-e14df213138c\": \"efc003b2-8c76-4b94-aeb5-e14df213138c\", \"b77919e0-eec5-482e-b687-bbce4ae98a3a\": \"b77919e0-eec5-482e-b687-bbce4ae98a3a\", \"2b04b3b9-bbd3-4ac6-93a6-547d91e7303c\": \"2b04b3b9-bbd3-4ac6-93a6-547d91e7303c\", \"f0603697-7239-485d-a787-4484abe3a8ef\": \"f0603697-7239-485d-a787-4484abe3a8ef\", \"4566c459-0c09-4c13-bb8f-4e6b45faa2fe\": \"4566c459-0c09-4c13-bb8f-4e6b45faa2fe\", \"421bdc8b-6dba-4115-91ef-52d3ce3004a3\": \"421bdc8b-6dba-4115-91ef-52d3ce3004a3\", \"c21ed19c-da94-474d-a81d-5c3dca1003aa\": \"c21ed19c-da94-474d-a81d-5c3dca1003aa\", \"2af0f75f-e5f3-4fae-9f29-41bae9949bff\": \"2af0f75f-e5f3-4fae-9f29-41bae9949bff\", \"3c28d204-6963-4733-9647-dc97a05689ed\": \"3c28d204-6963-4733-9647-dc97a05689ed\", \"f9810544-3c78-423b-89ca-2cfc88beeace\": \"f9810544-3c78-423b-89ca-2cfc88beeace\", \"17da159c-3ce3-4910-a1f5-44282bfa8c16\": \"17da159c-3ce3-4910-a1f5-44282bfa8c16\", \"9eb20c0d-b7ec-472c-bf72-ce2daef7c864\": \"9eb20c0d-b7ec-472c-bf72-ce2daef7c864\", \"e87f76d4-d8c9-43fa-9d77-6b65dd7e29ce\": \"e87f76d4-d8c9-43fa-9d77-6b65dd7e29ce\", \"a399470b-eb05-44af-99fe-f7e38c3caecd\": \"a399470b-eb05-44af-99fe-f7e38c3caecd\", \"a3f0211f-ac45-4eb6-8f16-bb41dcd12eb8\": \"a3f0211f-ac45-4eb6-8f16-bb41dcd12eb8\", \"44cee3ec-3421-4a4e-bf33-cef03b55a6da\": \"44cee3ec-3421-4a4e-bf33-cef03b55a6da\", \"947f049c-76c2-4eb8-a548-6bd17ffc49a6\": \"947f049c-76c2-4eb8-a548-6bd17ffc49a6\", \"29e5a730-7783-4e13-98c8-b9b82ad9bf54\": \"29e5a730-7783-4e13-98c8-b9b82ad9bf54\", \"dd1a7215-2f76-43df-9e7e-6e891fb91964\": \"dd1a7215-2f76-43df-9e7e-6e891fb91964\", \"9c56f5d7-f81e-4c6b-b4a1-20e4bce63cc4\": \"9c56f5d7-f81e-4c6b-b4a1-20e4bce63cc4\", \"5b812df0-f254-444f-aa9f-4009970d677c\": \"5b812df0-f254-444f-aa9f-4009970d677c\", \"6bd7ff33-94a7-46b3-85fc-54c227301aea\": \"6bd7ff33-94a7-46b3-85fc-54c227301aea\", \"4ca9ea4b-6f18-42a7-b7b3-73d7caca9cc8\": \"4ca9ea4b-6f18-42a7-b7b3-73d7caca9cc8\", \"f1e12447-88d8-42c4-b3c3-b886f644d8bd\": \"f1e12447-88d8-42c4-b3c3-b886f644d8bd\", \"51127064-c4a7-4a8a-8505-f5033d6defe0\": \"51127064-c4a7-4a8a-8505-f5033d6defe0\", \"c0672079-149c-40df-9490-f6c7e679e93c\": \"c0672079-149c-40df-9490-f6c7e679e93c\", \"b44a4582-fcfa-4486-aa1d-ef598cbae369\": \"b44a4582-fcfa-4486-aa1d-ef598cbae369\", \"298f25b5-df2f-4950-ae37-6b1fc128c027\": \"298f25b5-df2f-4950-ae37-6b1fc128c027\", \"9677b70e-2e4e-4981-9c3a-82a48365ebe8\": \"9677b70e-2e4e-4981-9c3a-82a48365ebe8\", \"5efc76b5-9446-427a-b103-14715bc40dcc\": \"5efc76b5-9446-427a-b103-14715bc40dcc\", \"c853f933-d581-4852-b240-3b765a56dc00\": \"c853f933-d581-4852-b240-3b765a56dc00\", \"d5d042ec-42fd-4605-b20c-b4ad96cc8d89\": \"d5d042ec-42fd-4605-b20c-b4ad96cc8d89\", \"fd5173ae-7079-4408-851c-e0d8858eea8d\": \"fd5173ae-7079-4408-851c-e0d8858eea8d\", \"726d7911-8760-45db-b1f0-61969a95b408\": \"726d7911-8760-45db-b1f0-61969a95b408\", \"3e05e100-dee0-42fa-972f-c7b4c90b7d65\": \"3e05e100-dee0-42fa-972f-c7b4c90b7d65\", \"a0bb1b82-a7b6-4094-9f19-adf858b863da\": \"a0bb1b82-a7b6-4094-9f19-adf858b863da\", \"f608f2a3-c509-47c7-993f-7af25d9a95be\": \"f608f2a3-c509-47c7-993f-7af25d9a95be\", \"1341bd03-98d2-4c65-855c-47eec6c7bf4f\": \"1341bd03-98d2-4c65-855c-47eec6c7bf4f\", \"e3f7bd08-56a2-4bd9-9d14-9444fb4476b6\": \"e3f7bd08-56a2-4bd9-9d14-9444fb4476b6\", \"68838477-935f-466b-9c87-3e909edcd94d\": \"68838477-935f-466b-9c87-3e909edcd94d\", \"d6e642eb-dcf9-4bbf-a35c-c8d1ab7e0ce4\": \"d6e642eb-dcf9-4bbf-a35c-c8d1ab7e0ce4\", \"ece2bdc4-45a5-4dde-a857-79ce459094c4\": \"ece2bdc4-45a5-4dde-a857-79ce459094c4\", \"23011792-6904-433f-befb-362d6d557eb0\": \"23011792-6904-433f-befb-362d6d557eb0\", \"1a66fb1b-a184-463f-8d77-0d5751e50e3a\": \"1a66fb1b-a184-463f-8d77-0d5751e50e3a\", \"be50a3c4-1832-43ef-a5cc-f73d5aca8080\": \"be50a3c4-1832-43ef-a5cc-f73d5aca8080\", \"ddc6346e-fcf0-492f-8ca8-55497527dd60\": \"ddc6346e-fcf0-492f-8ca8-55497527dd60\", \"9bbac132-9124-45a8-b52a-d946db8a5d06\": \"9bbac132-9124-45a8-b52a-d946db8a5d06\", \"54b0313d-a70d-4b56-bd0b-6a92c81041c5\": \"54b0313d-a70d-4b56-bd0b-6a92c81041c5\", \"cd563902-254b-46a0-b0e7-fcb1e56a19c2\": \"cd563902-254b-46a0-b0e7-fcb1e56a19c2\", \"2a818b39-1082-41a4-9346-9362c611f298\": \"2a818b39-1082-41a4-9346-9362c611f298\", \"74e8ede2-5286-4dd6-b3ac-1a16f452e5a0\": \"74e8ede2-5286-4dd6-b3ac-1a16f452e5a0\", \"037c672c-a214-4f8f-ac4d-57e0bcb008da\": \"037c672c-a214-4f8f-ac4d-57e0bcb008da\", \"be15fd6d-49b3-48d1-a514-8bf1e2a371ff\": \"be15fd6d-49b3-48d1-a514-8bf1e2a371ff\", \"2712582a-92f1-4000-a95a-abd2f5bbd97e\": \"2712582a-92f1-4000-a95a-abd2f5bbd97e\", \"a97efe1b-4f5e-4c2f-b460-e71a2236e8d4\": \"a97efe1b-4f5e-4c2f-b460-e71a2236e8d4\", \"57881336-f839-4e44-9fdd-95cbe84e367f\": \"57881336-f839-4e44-9fdd-95cbe84e367f\", \"a33461ae-75ff-4532-ab83-b37457d63c18\": \"a33461ae-75ff-4532-ab83-b37457d63c18\", \"b312cb3a-b226-43d6-9a00-987b4917f87a\": \"b312cb3a-b226-43d6-9a00-987b4917f87a\", \"ea95dcf1-784d-4893-b424-6bca00bd8d9f\": \"ea95dcf1-784d-4893-b424-6bca00bd8d9f\", \"6b42afc7-4181-4785-ab43-f4bb09fc9bb9\": \"6b42afc7-4181-4785-ab43-f4bb09fc9bb9\", \"801568cd-3b2b-4108-922b-caea0ed2d363\": \"801568cd-3b2b-4108-922b-caea0ed2d363\", \"ee453ad7-30b5-464d-ad07-535141acfab7\": \"ee453ad7-30b5-464d-ad07-535141acfab7\", \"efce897c-19f3-48e3-a3ef-297ad13637df\": \"efce897c-19f3-48e3-a3ef-297ad13637df\", \"04b694ab-5732-4a0f-8720-2936bf2007b0\": \"04b694ab-5732-4a0f-8720-2936bf2007b0\", \"b9d65d34-dba7-403f-b8dc-31251745e9e1\": \"b9d65d34-dba7-403f-b8dc-31251745e9e1\", \"84f1380e-6ee2-434a-b5d4-ec5d5b0c8b2c\": \"84f1380e-6ee2-434a-b5d4-ec5d5b0c8b2c\", \"45048ae2-7b7c-4bbe-8d2c-0e03d62560ed\": \"45048ae2-7b7c-4bbe-8d2c-0e03d62560ed\", \"63ca5478-034b-437f-939f-4c04fb174cb7\": \"63ca5478-034b-437f-939f-4c04fb174cb7\", \"dc30fdd2-978c-492a-b9c0-ffbbedb755bc\": \"dc30fdd2-978c-492a-b9c0-ffbbedb755bc\", \"46ceae09-a108-4415-970a-58eabe1c6e65\": \"46ceae09-a108-4415-970a-58eabe1c6e65\", \"bb07f394-2a9c-44fb-8be8-724c1d91e8a6\": \"bb07f394-2a9c-44fb-8be8-724c1d91e8a6\", \"948f9f83-3ff1-4b79-b5f2-e9b533478138\": \"948f9f83-3ff1-4b79-b5f2-e9b533478138\", \"865c9a9c-cc9f-4c1a-a7ee-d4794292ef50\": \"865c9a9c-cc9f-4c1a-a7ee-d4794292ef50\", \"663055d9-883c-49a1-8278-74cbab4cd280\": \"663055d9-883c-49a1-8278-74cbab4cd280\", \"c9ddfdcf-fffc-493a-bfeb-1259131aaa11\": \"c9ddfdcf-fffc-493a-bfeb-1259131aaa11\", \"fda16941-587f-4bf8-b025-e87fefd41b70\": \"fda16941-587f-4bf8-b025-e87fefd41b70\", \"6cb8a292-8c4e-4883-8dcd-d4e041d21e4c\": \"6cb8a292-8c4e-4883-8dcd-d4e041d21e4c\", \"d2c8c914-9885-4dcf-ae68-5e93bde98184\": \"d2c8c914-9885-4dcf-ae68-5e93bde98184\", \"a1dcdaac-9783-47dc-a124-fbfd58ba5fd4\": \"a1dcdaac-9783-47dc-a124-fbfd58ba5fd4\", \"e6ab407f-56ae-42d1-bb13-73d34a44cc73\": \"e6ab407f-56ae-42d1-bb13-73d34a44cc73\"}, \"doc_id_dict\": {}, \"embeddings_dict\": {}}"}}}
|