hymai commited on
Commit
decc7cb
·
verified ·
1 Parent(s): b80cc9b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -10
app.py CHANGED
@@ -22,10 +22,6 @@ from llama_index.core import PromptTemplate
22
  from llama_index.core.llms import ChatMessage, MessageRole
23
  from llama_index.core.chat_engine import CondenseQuestionChatEngine
24
 
25
- # Helps asyncio run within Jupyter
26
- import nest_asyncio
27
- import asyncio
28
- nest_asyncio.apply()
29
 
30
  # load env file
31
  load_dotenv()
@@ -74,7 +70,7 @@ else:
74
  )
75
  documents = reader.load_data()
76
  print("index creating with `%d` documents", len(documents))
77
- index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, transformations=[splitter], use_async=True)
78
  index.storage_context.persist(persist_dir="./vectordb")
79
 
80
  """
@@ -118,7 +114,6 @@ retriever = DocumentSummaryIndexEmbeddingRetriever(
118
  retriever = VectorIndexRetriever(
119
  index = index,
120
  similarity_top_k = 10,
121
- use_async=True
122
  #vector_store_query_mode="mmr",
123
  #vector_store_kwargs={"mmr_threshold": 0.4}
124
  )
@@ -197,13 +192,13 @@ with gr.Blocks() as demo:
197
  placeholder="Ask me something",)
198
  clear = gr.Button("Delete")
199
 
200
- async def user(user_message, history):
201
  return "", history + [[user_message, None]]
202
 
203
- async def bot(history):
204
  user_message = history[-1][0]
205
  #bot_message = chat_engine.chat(user_message)
206
- bot_message = await query_engine.aquery(user_message + "Let's think step by step to get the correct answer. If you cannot provide an answer, say you don't know.")
207
  history[-1][1] = ""
208
  for character in bot_message.response:
209
  history[-1][1] += character
@@ -215,4 +210,4 @@ with gr.Blocks() as demo:
215
  )
216
  clear.click(lambda: None, None, chatbot, queue=False)
217
  # demo.queue()
218
- asyncio.run(demo.launch(share=False))
 
22
  from llama_index.core.llms import ChatMessage, MessageRole
23
  from llama_index.core.chat_engine import CondenseQuestionChatEngine
24
 
 
 
 
 
25
 
26
  # load env file
27
  load_dotenv()
 
70
  )
71
  documents = reader.load_data()
72
  print("index creating with `%d` documents", len(documents))
73
+ index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, transformations=[splitter])
74
  index.storage_context.persist(persist_dir="./vectordb")
75
 
76
  """
 
114
  retriever = VectorIndexRetriever(
115
  index = index,
116
  similarity_top_k = 10,
 
117
  #vector_store_query_mode="mmr",
118
  #vector_store_kwargs={"mmr_threshold": 0.4}
119
  )
 
192
  placeholder="Ask me something",)
193
  clear = gr.Button("Delete")
194
 
195
+ def user(user_message, history):
196
  return "", history + [[user_message, None]]
197
 
198
+ def bot(history):
199
  user_message = history[-1][0]
200
  #bot_message = chat_engine.chat(user_message)
201
+ bot_message = query_engine.query(user_message + "Let's think step by step to get the correct answer. If you cannot provide an answer, say you don't know.")
202
  history[-1][1] = ""
203
  for character in bot_message.response:
204
  history[-1][1] += character
 
210
  )
211
  clear.click(lambda: None, None, chatbot, queue=False)
212
  # demo.queue()
213
+ demo.launch(share=False)