Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,12 @@ from llama_index.core import PromptTemplate
|
|
22 |
from llama_index.core.llms import ChatMessage, MessageRole
|
23 |
from llama_index.core.chat_engine import CondenseQuestionChatEngine
|
24 |
|
|
|
|
|
|
|
|
|
25 |
|
|
|
26 |
load_dotenv()
|
27 |
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
28 |
LLAMAINDEX_API_KEY = os.getenv('LLAMAINDEX_API_KEY')
|
@@ -69,7 +74,7 @@ else:
|
|
69 |
)
|
70 |
documents = reader.load_data()
|
71 |
print("index creating with `%d` documents", len(documents))
|
72 |
-
index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, transformations=[splitter])
|
73 |
index.storage_context.persist(persist_dir="./vectordb")
|
74 |
|
75 |
"""
|
@@ -113,6 +118,7 @@ retriever = DocumentSummaryIndexEmbeddingRetriever(
|
|
113 |
retriever = VectorIndexRetriever(
|
114 |
index = index,
|
115 |
similarity_top_k = 10,
|
|
|
116 |
#vector_store_query_mode="mmr",
|
117 |
#vector_store_kwargs={"mmr_threshold": 0.4}
|
118 |
)
|
@@ -197,7 +203,7 @@ with gr.Blocks() as demo:
|
|
197 |
def bot(history):
|
198 |
user_message = history[-1][0]
|
199 |
#bot_message = chat_engine.chat(user_message)
|
200 |
-
bot_message = query_engine.
|
201 |
history[-1][1] = ""
|
202 |
for character in bot_message.response:
|
203 |
history[-1][1] += character
|
|
|
22 |
from llama_index.core.llms import ChatMessage, MessageRole
|
23 |
from llama_index.core.chat_engine import CondenseQuestionChatEngine
|
24 |
|
25 |
+
# Helps asyncio run within Jupyter
|
26 |
+
import nest_asyncio
|
27 |
+
import asyncio
|
28 |
+
nest_asyncio.apply()
|
29 |
|
30 |
+
# load env file
|
31 |
load_dotenv()
|
32 |
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
33 |
LLAMAINDEX_API_KEY = os.getenv('LLAMAINDEX_API_KEY')
|
|
|
74 |
)
|
75 |
documents = reader.load_data()
|
76 |
print("index creating with `%d` documents", len(documents))
|
77 |
+
index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, transformations=[splitter], use_async=True)
|
78 |
index.storage_context.persist(persist_dir="./vectordb")
|
79 |
|
80 |
"""
|
|
|
118 |
retriever = VectorIndexRetriever(
|
119 |
index = index,
|
120 |
similarity_top_k = 10,
|
121 |
+
use_async=True
|
122 |
#vector_store_query_mode="mmr",
|
123 |
#vector_store_kwargs={"mmr_threshold": 0.4}
|
124 |
)
|
|
|
203 |
def bot(history):
|
204 |
user_message = history[-1][0]
|
205 |
#bot_message = chat_engine.chat(user_message)
|
206 |
+
bot_message = query_engine.aquery(user_message + "Let's think step by step to get the correct answer. If you cannot provide an answer, say you don't know.")
|
207 |
history[-1][1] = ""
|
208 |
for character in bot_message.response:
|
209 |
history[-1][1] += character
|