Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import chromadb
|
2 |
+
from llama_index.core.base.embeddings.base import similarity
|
3 |
+
#from llama_index.llms.ollama import Ollama
|
4 |
+
from llama_index.llms.groq import Groq
|
5 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, DocumentSummaryIndex
|
6 |
+
from llama_index.core import StorageContext, get_response_synthesizer
|
7 |
+
from llama_index.core.retrievers import VectorIndexRetriever
|
8 |
+
from llama_index.core.query_engine import RetrieverQueryEngine
|
9 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
10 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
11 |
+
from llama_index.core import load_index_from_storage
|
12 |
+
import os
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler, CBEventType
|
15 |
+
from llama_index.core.node_parser import SentenceSplitter
|
16 |
+
from llama_index.core.postprocessor import SimilarityPostprocessor
|
17 |
+
import time
|
18 |
+
import gradio as gr
|
19 |
+
from llama_index.core.memory import ChatMemoryBuffer
|
20 |
+
from llama_parse import LlamaParse
|
21 |
+
from llama_index.core import PromptTemplate
|
22 |
+
from llama_index.core.llms import ChatMessage, MessageRole
|
23 |
+
from llama_index.core.chat_engine import CondenseQuestionChatEngine
|
24 |
+
|
25 |
+
|
26 |
+
# load env file
|
27 |
+
load_dotenv()
|
28 |
+
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
29 |
+
LLAMAINDEX_API_KEY = os.getenv('LLAMAINDEX_API_KEY')
|
30 |
+
|
31 |
+
# set up callback manager
|
32 |
+
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
|
33 |
+
callback_manager = CallbackManager([llama_debug])
|
34 |
+
Settings.callback_manager = callback_manager
|
35 |
+
|
36 |
+
# set up LLM
|
37 |
+
llm = Groq(model="llama3-70b-8192")#"llama3-8b-8192")
|
38 |
+
Settings.llm = llm
|
39 |
+
|
40 |
+
# set up embedding model
|
41 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
42 |
+
Settings.embed_model = embed_model
|
43 |
+
|
44 |
+
# create splitter
|
45 |
+
splitter = SentenceSplitter(chunk_size=2048, chunk_overlap=50)
|
46 |
+
Settings.transformations = [splitter]
|
47 |
+
|
48 |
+
# create parser
|
49 |
+
parser = LlamaParse(
|
50 |
+
api_key=LLAMAINDEX_API_KEY,
|
51 |
+
result_type="markdown", # "markdown" and "text" are available
|
52 |
+
verbose=True,
|
53 |
+
)
|
54 |
+
|
55 |
+
#create index
|
56 |
+
if os.path.exists("./vectordb"):
|
57 |
+
print("Index Exists!")
|
58 |
+
storage_context = StorageContext.from_defaults(persist_dir="./vectordb")
|
59 |
+
index = load_index_from_storage(storage_context)
|
60 |
+
else:
|
61 |
+
filename_fn = lambda filename: {"file_name": filename}
|
62 |
+
required_exts = [".pdf",".docx"]
|
63 |
+
file_extractor = {".pdf": parser}
|
64 |
+
reader = SimpleDirectoryReader(
|
65 |
+
input_dir="./data",
|
66 |
+
file_extractor=file_extractor,
|
67 |
+
required_exts=required_exts,
|
68 |
+
recursive=True,
|
69 |
+
file_metadata=filename_fn
|
70 |
+
)
|
71 |
+
documents = reader.load_data()
|
72 |
+
print("index creating with `%d` documents", len(documents))
|
73 |
+
index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, transformations=[splitter])
|
74 |
+
index.storage_context.persist(persist_dir="./vectordb")
|
75 |
+
|
76 |
+
"""
|
77 |
+
#create document summary index
|
78 |
+
if os.path.exists("./docsummarydb"):
|
79 |
+
print("Index Exists!")
|
80 |
+
storage_context = StorageContext.from_defaults(persist_dir="./docsummarydb")
|
81 |
+
doc_index = load_index_from_storage(storage_context)
|
82 |
+
else:
|
83 |
+
filename_fn = lambda filename: {"file_name": filename}
|
84 |
+
required_exts = [".pdf",".docx"]
|
85 |
+
reader = SimpleDirectoryReader(
|
86 |
+
input_dir="./data",
|
87 |
+
required_exts=required_exts,
|
88 |
+
recursive=True,
|
89 |
+
file_metadata=filename_fn
|
90 |
+
)
|
91 |
+
documents = reader.load_data()
|
92 |
+
print("index creating with `%d` documents", len(documents))
|
93 |
+
|
94 |
+
response_synthesizer = get_response_synthesizer(
|
95 |
+
response_mode="tree_summarize", use_async=True
|
96 |
+
)
|
97 |
+
doc_index = DocumentSummaryIndex.from_documents(
|
98 |
+
documents,
|
99 |
+
llm = llm,
|
100 |
+
transformations = [splitter],
|
101 |
+
response_synthesizer = response_synthesizer,
|
102 |
+
show_progress = True
|
103 |
+
)
|
104 |
+
doc_index.storage_context.persist(persist_dir="./docsummarydb")
|
105 |
+
"""
|
106 |
+
"""
|
107 |
+
retriever = DocumentSummaryIndexEmbeddingRetriever(
|
108 |
+
doc_index,
|
109 |
+
similarity_top_k=5,
|
110 |
+
)
|
111 |
+
"""
|
112 |
+
|
113 |
+
# set up retriever
|
114 |
+
retriever = VectorIndexRetriever(
|
115 |
+
index = index,
|
116 |
+
similarity_top_k = 10,
|
117 |
+
#vector_store_query_mode="mmr",
|
118 |
+
#vector_store_kwargs={"mmr_threshold": 0.4}
|
119 |
+
)
|
120 |
+
|
121 |
+
# set up response synthesizer
|
122 |
+
response_synthesizer = get_response_synthesizer()
|
123 |
+
|
124 |
+
### customising prompts worsened the result###
|
125 |
+
"""
|
126 |
+
# set up prompt template
|
127 |
+
qa_prompt_tmpl = (
|
128 |
+
"Context information from multiple sources is below.\n"
|
129 |
+
"---------------------\n"
|
130 |
+
"{context_str}\n"
|
131 |
+
"---------------------\n"
|
132 |
+
"Given the information from multiple sources and not prior knowledge, "
|
133 |
+
"answer the query.\n"
|
134 |
+
"Query: {query_str}\n"
|
135 |
+
"Answer: "
|
136 |
+
)
|
137 |
+
qa_prompt = PromptTemplate(qa_prompt_tmpl)
|
138 |
+
"""
|
139 |
+
# setting up query engine
|
140 |
+
query_engine = RetrieverQueryEngine(
|
141 |
+
retriever = retriever,
|
142 |
+
node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.53)],
|
143 |
+
response_synthesizer=get_response_synthesizer(response_mode="tree_summarize",verbose=True)
|
144 |
+
)
|
145 |
+
print(query_engine.get_prompts())
|
146 |
+
|
147 |
+
#response = query_engine.query("What happens if the distributor wants its own warehouse for pizzahood?")
|
148 |
+
#print(response)
|
149 |
+
|
150 |
+
|
151 |
+
memory = ChatMemoryBuffer.from_defaults(token_limit=10000)
|
152 |
+
|
153 |
+
custom_prompt = PromptTemplate(
|
154 |
+
"""\
|
155 |
+
Given a conversation (between Human and Assistant) and a follow up message from Human, \
|
156 |
+
rewrite the message to be a standalone question that captures all relevant context \
|
157 |
+
from the conversation. If you are unsure, ask for more information.
|
158 |
+
<Chat History>
|
159 |
+
{chat_history}
|
160 |
+
<Follow Up Message>
|
161 |
+
{question}
|
162 |
+
<Standalone question>
|
163 |
+
"""
|
164 |
+
)
|
165 |
+
|
166 |
+
# list of `ChatMessage` objects
|
167 |
+
custom_chat_history = [
|
168 |
+
ChatMessage(
|
169 |
+
role=MessageRole.USER,
|
170 |
+
content="Hello assistant.",
|
171 |
+
),
|
172 |
+
ChatMessage(role=MessageRole.ASSISTANT, content="Hello user."),
|
173 |
+
]
|
174 |
+
|
175 |
+
chat_engine = CondenseQuestionChatEngine.from_defaults(
|
176 |
+
query_engine=query_engine,
|
177 |
+
condense_question_prompt=custom_prompt,
|
178 |
+
chat_history=custom_chat_history,
|
179 |
+
verbose=True,
|
180 |
+
memory=memory
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
# gradio with streaming support
|
185 |
+
with gr.Blocks() as demo:
|
186 |
+
chat_engine = chat_engine
|
187 |
+
chatbot = gr.Chatbot()
|
188 |
+
msg = gr.Textbox(label="⏎ for sending",
|
189 |
+
placeholder="Ask me something",)
|
190 |
+
clear = gr.Button("Delete")
|
191 |
+
|
192 |
+
def user(user_message, history):
|
193 |
+
return "", history + [[user_message, None]]
|
194 |
+
|
195 |
+
def bot(history):
|
196 |
+
user_message = history[-1][0]
|
197 |
+
#bot_message = chat_engine.chat(user_message)
|
198 |
+
bot_message = query_engine.query(user_message + "Let's think step by step to get the correct answer. If you cannot provide an answer, say you don't know.")
|
199 |
+
history[-1][1] = ""
|
200 |
+
for character in bot_message.response:
|
201 |
+
history[-1][1] += character
|
202 |
+
time.sleep(0.01)
|
203 |
+
yield history
|
204 |
+
|
205 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
206 |
+
bot, chatbot, chatbot
|
207 |
+
)
|
208 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
209 |
+
# demo.queue()
|
210 |
+
demo.launch(share=False)
|