malavika4089's picture
Update app.py
ff1888c verified
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers import AutoModelForSequenceClassification
from lxml_html_clean import Cleaner
from transformers import AutoTokenizer
from langdetect import detect
from newspaper import Article
from PIL import Image
import streamlit as st
import requests
import torch
st.markdown("## Prediction of Misinformation by given URL")
background = Image.open('logo.jpg')
st.image(background)
st.markdown(f"### Article URL")
text = st.text_area("Insert some url here",
value="https://www.livelaw.in/news-updates/supreme-court-collegium-recommends-appointment-advocate-praveen-kumar-giri-judge-allahabad-high-court-279470")
# @st.cache(allow_output_mutation=True)
# def get_models_and_tokenizers():
# model_name = 'distilbert-base-uncased-finetuned-sst-2-english'
# model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
# model.eval()
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model.load_state_dict(torch.load('./my_saved_model/checkpoint-6320/rng_state.pth', map_location='cpu'))
# model_name_translator = "facebook/wmt19-ru-en"
# tokenizer_translator = FSMTTokenizer.from_pretrained(model_name_translator)
# model_translator = FSMTForConditionalGeneration.from_pretrained(model_name_translator)
# model_translator.eval()
# return model, tokenizer, model_translator, tokenizer_translator
@st.cache_data()
def get_models_and_tokenizers():
model_name = 'distilbert-base-uncased-finetuned-sst-2-english'
checkpoint_dir = './my_saved_model/checkpoint-6320/' # Path to your checkpoint folder
# Load the classification model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained(checkpoint_dir, num_labels=2)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load the translator model and tokenizer
model_name_translator = "facebook/wmt19-ru-en"
tokenizer_translator = FSMTTokenizer.from_pretrained(model_name_translator)
model_translator = FSMTForConditionalGeneration.from_pretrained(model_name_translator)
model.eval()
model_translator.eval()
return model, tokenizer, model_translator, tokenizer_translator
model, tokenizer, model_translator, tokenizer_translator = get_models_and_tokenizers()
article = Article(text)
article.download()
article.parse()
concated_text = article.title + '. ' + article.text
lang = detect(concated_text)
st.markdown(f"### Language detection")
if lang == 'ru':
st.markdown(f"The language of this article is {lang.upper()} so we translated it!")
with st.spinner('Waiting for translation'):
input_ids = tokenizer_translator.encode(concated_text,
return_tensors="pt", max_length=512, truncation=True)
outputs = model_translator.generate(input_ids)
decoded = tokenizer_translator.decode(outputs[0], skip_special_tokens=True)
st.markdown("### Translated Text")
st.markdown(f"{decoded[:777]}")
concated_text = decoded
else:
st.markdown(f"The language of this article for sure: {lang.upper()}!")
st.markdown("### Extracted Text")
st.markdown(f"{concated_text[:777]}")
tokens_info = tokenizer(concated_text, truncation=True, return_tensors="pt")
with torch.no_grad():
raw_predictions = model(**tokens_info)
softmaxed = int(torch.nn.functional.softmax(raw_predictions.logits[0], dim=0)[1] * 100)
st.markdown("### Truthteller Predicts..")
st.progress(softmaxed)
st.markdown(f"This is fake by *{softmaxed}%*!")
if (softmaxed > 70):
st.error('We would not trust this text! This is misleading..')
elif (softmaxed > 40):
st.warning('We are not sure about this text!')
else:
st.success('We would trust this text!')