File size: 11,825 Bytes
6c343a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import torch
from torch import nn as nn
from torch.nn import functional as F

from basicsr.utils.registry import ARCH_REGISTRY


class DenseBlocksTemporalReduce(nn.Module):
    """A concatenation of 3 dense blocks with reduction in temporal dimension.

    Note that the output temporal dimension is 6 fewer the input temporal dimension, since there are 3 blocks.

    Args:
        num_feat (int): Number of channels in the blocks. Default: 64.
        num_grow_ch (int): Growing factor of the dense blocks. Default: 32
        adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation.
            Set to false if you want to train from scratch. Default: False.
    """

    def __init__(self, num_feat=64, num_grow_ch=32, adapt_official_weights=False):
        super(DenseBlocksTemporalReduce, self).__init__()
        if adapt_official_weights:
            eps = 1e-3
            momentum = 1e-3
        else:  # pytorch default values
            eps = 1e-05
            momentum = 0.1

        self.temporal_reduce1 = nn.Sequential(
            nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
            nn.Conv3d(num_feat, num_feat, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True),
            nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
            nn.Conv3d(num_feat, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))

        self.temporal_reduce2 = nn.Sequential(
            nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
            nn.Conv3d(
                num_feat + num_grow_ch,
                num_feat + num_grow_ch, (1, 1, 1),
                stride=(1, 1, 1),
                padding=(0, 0, 0),
                bias=True), nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
            nn.Conv3d(num_feat + num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))

        self.temporal_reduce3 = nn.Sequential(
            nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
            nn.Conv3d(
                num_feat + 2 * num_grow_ch,
                num_feat + 2 * num_grow_ch, (1, 1, 1),
                stride=(1, 1, 1),
                padding=(0, 0, 0),
                bias=True), nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum),
            nn.ReLU(inplace=True),
            nn.Conv3d(
                num_feat + 2 * num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))

    def forward(self, x):
        """
        Args:
            x (Tensor): Input tensor with shape (b, num_feat, t, h, w).

        Returns:
            Tensor: Output with shape (b, num_feat + num_grow_ch * 3, 1, h, w).
        """
        x1 = self.temporal_reduce1(x)
        x1 = torch.cat((x[:, :, 1:-1, :, :], x1), 1)

        x2 = self.temporal_reduce2(x1)
        x2 = torch.cat((x1[:, :, 1:-1, :, :], x2), 1)

        x3 = self.temporal_reduce3(x2)
        x3 = torch.cat((x2[:, :, 1:-1, :, :], x3), 1)

        return x3


class DenseBlocks(nn.Module):
    """ A concatenation of N dense blocks.

    Args:
        num_feat (int): Number of channels in the blocks. Default: 64.
        num_grow_ch (int): Growing factor of the dense blocks. Default: 32.
        num_block (int): Number of dense blocks. The values are:
            DUF-S (16 layers): 3
            DUF-M (18 layers): 9
            DUF-L (52 layers): 21
        adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation.
            Set to false if you want to train from scratch. Default: False.
    """

    def __init__(self, num_block, num_feat=64, num_grow_ch=16, adapt_official_weights=False):
        super(DenseBlocks, self).__init__()
        if adapt_official_weights:
            eps = 1e-3
            momentum = 1e-3
        else:  # pytorch default values
            eps = 1e-05
            momentum = 0.1

        self.dense_blocks = nn.ModuleList()
        for i in range(0, num_block):
            self.dense_blocks.append(
                nn.Sequential(
                    nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
                    nn.Conv3d(
                        num_feat + i * num_grow_ch,
                        num_feat + i * num_grow_ch, (1, 1, 1),
                        stride=(1, 1, 1),
                        padding=(0, 0, 0),
                        bias=True), nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum),
                    nn.ReLU(inplace=True),
                    nn.Conv3d(
                        num_feat + i * num_grow_ch,
                        num_grow_ch, (3, 3, 3),
                        stride=(1, 1, 1),
                        padding=(1, 1, 1),
                        bias=True)))

    def forward(self, x):
        """
        Args:
            x (Tensor): Input tensor with shape (b, num_feat, t, h, w).

        Returns:
            Tensor: Output with shape (b, num_feat + num_block * num_grow_ch, t, h, w).
        """
        for i in range(0, len(self.dense_blocks)):
            y = self.dense_blocks[i](x)
            x = torch.cat((x, y), 1)
        return x


class DynamicUpsamplingFilter(nn.Module):
    """Dynamic upsampling filter used in DUF.

    Ref: https://github.com/yhjo09/VSR-DUF.
    It only supports input with 3 channels. And it applies the same filters to 3 channels.

    Args:
        filter_size (tuple): Filter size of generated filters. The shape is (kh, kw). Default: (5, 5).
    """

    def __init__(self, filter_size=(5, 5)):
        super(DynamicUpsamplingFilter, self).__init__()
        if not isinstance(filter_size, tuple):
            raise TypeError(f'The type of filter_size must be tuple, but got type{filter_size}')
        if len(filter_size) != 2:
            raise ValueError(f'The length of filter size must be 2, but got {len(filter_size)}.')
        # generate a local expansion filter, similar to im2col
        self.filter_size = filter_size
        filter_prod = np.prod(filter_size)
        expansion_filter = torch.eye(int(filter_prod)).view(filter_prod, 1, *filter_size)  # (kh*kw, 1, kh, kw)
        self.expansion_filter = expansion_filter.repeat(3, 1, 1, 1)  # repeat for all the 3 channels

    def forward(self, x, filters):
        """Forward function for DynamicUpsamplingFilter.

        Args:
            x (Tensor): Input image with 3 channels. The shape is (n, 3, h, w).
            filters (Tensor): Generated dynamic filters.
                The shape is (n, filter_prod, upsampling_square, h, w).
                filter_prod: prod of filter kernel size, e.g., 1*5*5=25.
                upsampling_square: similar to pixel shuffle,
                    upsampling_square = upsampling * upsampling
                    e.g., for x 4 upsampling, upsampling_square= 4*4 = 16

        Returns:
            Tensor: Filtered image with shape (n, 3*upsampling_square, h, w)
        """
        n, filter_prod, upsampling_square, h, w = filters.size()
        kh, kw = self.filter_size
        expanded_input = F.conv2d(
            x, self.expansion_filter.to(x), padding=(kh // 2, kw // 2), groups=3)  # (n, 3*filter_prod, h, w)
        expanded_input = expanded_input.view(n, 3, filter_prod, h, w).permute(0, 3, 4, 1,
                                                                              2)  # (n, h, w, 3, filter_prod)
        filters = filters.permute(0, 3, 4, 1, 2)  # (n, h, w, filter_prod, upsampling_square]
        out = torch.matmul(expanded_input, filters)  # (n, h, w, 3, upsampling_square)
        return out.permute(0, 3, 4, 1, 2).view(n, 3 * upsampling_square, h, w)


@ARCH_REGISTRY.register()
class DUF(nn.Module):
    """Network architecture for DUF

    Paper: Jo et.al. Deep Video Super-Resolution Network Using Dynamic
            Upsampling Filters Without Explicit Motion Compensation, CVPR, 2018
    Code reference:
        https://github.com/yhjo09/VSR-DUF
    For all the models below, 'adapt_official_weights' is only necessary when
    loading the weights converted from the official TensorFlow weights.
    Please set it to False if you are training the model from scratch.

    There are three models with different model size: DUF16Layers, DUF28Layers,
    and DUF52Layers. This class is the base class for these models.

    Args:
        scale (int): The upsampling factor. Default: 4.
        num_layer (int): The number of layers. Default: 52.
        adapt_official_weights_weights (bool): Whether to adapt the weights
            translated from the official implementation. Set to false if you
            want to train from scratch. Default: False.
    """

    def __init__(self, scale=4, num_layer=52, adapt_official_weights=False):
        super(DUF, self).__init__()
        self.scale = scale
        if adapt_official_weights:
            eps = 1e-3
            momentum = 1e-3
        else:  # pytorch default values
            eps = 1e-05
            momentum = 0.1

        self.conv3d1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
        self.dynamic_filter = DynamicUpsamplingFilter((5, 5))

        if num_layer == 16:
            num_block = 3
            num_grow_ch = 32
        elif num_layer == 28:
            num_block = 9
            num_grow_ch = 16
        elif num_layer == 52:
            num_block = 21
            num_grow_ch = 16
        else:
            raise ValueError(f'Only supported (16, 28, 52) layers, but got {num_layer}.')

        self.dense_block1 = DenseBlocks(
            num_block=num_block, num_feat=64, num_grow_ch=num_grow_ch,
            adapt_official_weights=adapt_official_weights)  # T = 7
        self.dense_block2 = DenseBlocksTemporalReduce(
            64 + num_grow_ch * num_block, num_grow_ch, adapt_official_weights=adapt_official_weights)  # T = 1
        channels = 64 + num_grow_ch * num_block + num_grow_ch * 3
        self.bn3d2 = nn.BatchNorm3d(channels, eps=eps, momentum=momentum)
        self.conv3d2 = nn.Conv3d(channels, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)

        self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
        self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)

        self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
        self.conv3d_f2 = nn.Conv3d(
            512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)

    def forward(self, x):
        """
        Args:
            x (Tensor): Input with shape (b, 7, c, h, w)

        Returns:
            Tensor: Output with shape (b, c, h * scale, w * scale)
        """
        num_batches, num_imgs, _, h, w = x.size()

        x = x.permute(0, 2, 1, 3, 4)  # (b, c, 7, h, w) for Conv3D
        x_center = x[:, :, num_imgs // 2, :, :]

        x = self.conv3d1(x)
        x = self.dense_block1(x)
        x = self.dense_block2(x)
        x = F.relu(self.bn3d2(x), inplace=True)
        x = F.relu(self.conv3d2(x), inplace=True)

        # residual image
        res = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True))

        # filter
        filter_ = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True))
        filter_ = F.softmax(filter_.view(num_batches, 25, self.scale**2, h, w), dim=1)

        # dynamic filter
        out = self.dynamic_filter(x_center, filter_)
        out += res.squeeze_(2)
        out = F.pixel_shuffle(out, self.scale)

        return out