File size: 5,291 Bytes
6c343a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import torch.nn.functional as F


class L2Norm(nn.Module):
    def __init__(self, n_channels, scale=1.0):
        super(L2Norm, self).__init__()
        self.n_channels = n_channels
        self.scale = scale
        self.eps = 1e-10
        self.weight = nn.Parameter(torch.Tensor(self.n_channels))
        self.weight.data *= 0.0
        self.weight.data += self.scale

    def forward(self, x):
        norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
        x = x / norm * self.weight.view(1, -1, 1, 1)
        return x


class s3fd(nn.Module):
    def __init__(self):
        super(s3fd, self).__init__()
        self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)

        self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)

        self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
        self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)

        self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
        self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)

        self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)

        self.fc6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=3)
        self.fc7 = nn.Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)

        self.conv6_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
        self.conv6_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)

        self.conv7_1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0)
        self.conv7_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)

        self.conv3_3_norm = L2Norm(256, scale=10)
        self.conv4_3_norm = L2Norm(512, scale=8)
        self.conv5_3_norm = L2Norm(512, scale=5)

        self.conv3_3_norm_mbox_conf = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
        self.conv3_3_norm_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
        self.conv4_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
        self.conv4_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
        self.conv5_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
        self.conv5_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)

        self.fc7_mbox_conf = nn.Conv2d(1024, 2, kernel_size=3, stride=1, padding=1)
        self.fc7_mbox_loc = nn.Conv2d(1024, 4, kernel_size=3, stride=1, padding=1)
        self.conv6_2_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
        self.conv6_2_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
        self.conv7_2_mbox_conf = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1)
        self.conv7_2_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
        h = F.relu(self.conv1_1(x))
        h = F.relu(self.conv1_2(h))
        h = F.max_pool2d(h, 2, 2)

        h = F.relu(self.conv2_1(h))
        h = F.relu(self.conv2_2(h))
        h = F.max_pool2d(h, 2, 2)

        h = F.relu(self.conv3_1(h))
        h = F.relu(self.conv3_2(h))
        h = F.relu(self.conv3_3(h))
        f3_3 = h
        h = F.max_pool2d(h, 2, 2)

        h = F.relu(self.conv4_1(h))
        h = F.relu(self.conv4_2(h))
        h = F.relu(self.conv4_3(h))
        f4_3 = h
        h = F.max_pool2d(h, 2, 2)

        h = F.relu(self.conv5_1(h))
        h = F.relu(self.conv5_2(h))
        h = F.relu(self.conv5_3(h))
        f5_3 = h
        h = F.max_pool2d(h, 2, 2)

        h = F.relu(self.fc6(h))
        h = F.relu(self.fc7(h))
        ffc7 = h
        h = F.relu(self.conv6_1(h))
        h = F.relu(self.conv6_2(h))
        f6_2 = h
        h = F.relu(self.conv7_1(h))
        h = F.relu(self.conv7_2(h))
        f7_2 = h

        f3_3 = self.conv3_3_norm(f3_3)
        f4_3 = self.conv4_3_norm(f4_3)
        f5_3 = self.conv5_3_norm(f5_3)

        cls1 = self.conv3_3_norm_mbox_conf(f3_3)
        reg1 = self.conv3_3_norm_mbox_loc(f3_3)
        cls2 = self.conv4_3_norm_mbox_conf(f4_3)
        reg2 = self.conv4_3_norm_mbox_loc(f4_3)
        cls3 = self.conv5_3_norm_mbox_conf(f5_3)
        reg3 = self.conv5_3_norm_mbox_loc(f5_3)
        cls4 = self.fc7_mbox_conf(ffc7)
        reg4 = self.fc7_mbox_loc(ffc7)
        cls5 = self.conv6_2_mbox_conf(f6_2)
        reg5 = self.conv6_2_mbox_loc(f6_2)
        cls6 = self.conv7_2_mbox_conf(f7_2)
        reg6 = self.conv7_2_mbox_loc(f7_2)

        # max-out background label
        chunk = torch.chunk(cls1, 4, 1)
        bmax = torch.max(torch.max(chunk[0], chunk[1]), chunk[2])
        cls1 = torch.cat([bmax, chunk[3]], dim=1)

        return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6]