File size: 1,324 Bytes
6c343a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import torchvision.transforms as transforms
import cv2
import numpy as np

from .model import BiSeNet


def init_parser(pth_path):
    n_classes = 19
    net = BiSeNet(n_classes=n_classes)
    net.cuda()
    net.load_state_dict(torch.load(pth_path))
    net.eval()
    return net


def image_to_parsing(img, net):
    img = cv2.resize(img, (512, 512))
    img = img[:,:,::-1]
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    ])
    img = transform(img.copy())
    img = torch.unsqueeze(img, 0)

    with torch.no_grad():
        img = img.cuda()
        out = net(img)[0]
        parsing = out.squeeze(0).cpu().numpy().argmax(0)
        return parsing


def get_mask(parsing, classes):
    res = parsing == classes[0]
    for val in classes[1:]:
        res += parsing == val
    return res


def swap_regions(source, target, net):
    parsing = image_to_parsing(source, net)
    face_classes = [1, 11, 12, 13]

    mask = get_mask(parsing, face_classes)
    mask = np.repeat(np.expand_dims(mask, axis=2), 3, 2)
    result = (1 - mask) * cv2.resize(source, (512, 512)) + mask * cv2.resize(target, (512, 512))
    result = cv2.resize(result.astype("float32"), (source.shape[1], source.shape[0]))
    return result