|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.utils.spectral_norm import spectral_norm |
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
from .dfdnet_util import AttentionBlock, Blur, MSDilationBlock, UpResBlock, adaptive_instance_normalization |
|
from .vgg_arch import VGGFeatureExtractor |
|
|
|
|
|
class SFTUpBlock(nn.Module): |
|
"""Spatial feature transform (SFT) with upsampling block. |
|
|
|
Args: |
|
in_channel (int): Number of input channels. |
|
out_channel (int): Number of output channels. |
|
kernel_size (int): Kernel size in convolutions. Default: 3. |
|
padding (int): Padding in convolutions. Default: 1. |
|
""" |
|
|
|
def __init__(self, in_channel, out_channel, kernel_size=3, padding=1): |
|
super(SFTUpBlock, self).__init__() |
|
self.conv1 = nn.Sequential( |
|
Blur(in_channel), |
|
spectral_norm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)), |
|
nn.LeakyReLU(0.04, True), |
|
|
|
) |
|
self.convup = nn.Sequential( |
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), |
|
spectral_norm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), |
|
nn.LeakyReLU(0.2, True), |
|
) |
|
|
|
|
|
self.scale_block = nn.Sequential( |
|
spectral_norm(nn.Conv2d(in_channel, out_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True), |
|
spectral_norm(nn.Conv2d(out_channel, out_channel, 3, 1, 1))) |
|
self.shift_block = nn.Sequential( |
|
spectral_norm(nn.Conv2d(in_channel, out_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True), |
|
spectral_norm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)), nn.Sigmoid()) |
|
|
|
|
|
def forward(self, x, updated_feat): |
|
out = self.conv1(x) |
|
|
|
scale = self.scale_block(updated_feat) |
|
shift = self.shift_block(updated_feat) |
|
out = out * scale + shift |
|
|
|
out = self.convup(out) |
|
return out |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class DFDNet(nn.Module): |
|
"""DFDNet: Deep Face Dictionary Network. |
|
|
|
It only processes faces with 512x512 size. |
|
|
|
Args: |
|
num_feat (int): Number of feature channels. |
|
dict_path (str): Path to the facial component dictionary. |
|
""" |
|
|
|
def __init__(self, num_feat, dict_path): |
|
super().__init__() |
|
self.parts = ['left_eye', 'right_eye', 'nose', 'mouth'] |
|
|
|
channel_sizes = [128, 256, 512, 512] |
|
self.feature_sizes = np.array([256, 128, 64, 32]) |
|
self.vgg_layers = ['relu2_2', 'relu3_4', 'relu4_4', 'conv5_4'] |
|
self.flag_dict_device = False |
|
|
|
|
|
self.dict = torch.load(dict_path) |
|
|
|
|
|
self.vgg_extractor = VGGFeatureExtractor( |
|
layer_name_list=self.vgg_layers, |
|
vgg_type='vgg19', |
|
use_input_norm=True, |
|
range_norm=True, |
|
requires_grad=False) |
|
|
|
|
|
self.attn_blocks = nn.ModuleDict() |
|
for idx, feat_size in enumerate(self.feature_sizes): |
|
for name in self.parts: |
|
self.attn_blocks[f'{name}_{feat_size}'] = AttentionBlock(channel_sizes[idx]) |
|
|
|
|
|
self.multi_scale_dilation = MSDilationBlock(num_feat * 8, dilation=[4, 3, 2, 1]) |
|
|
|
|
|
self.upsample0 = SFTUpBlock(num_feat * 8, num_feat * 8) |
|
self.upsample1 = SFTUpBlock(num_feat * 8, num_feat * 4) |
|
self.upsample2 = SFTUpBlock(num_feat * 4, num_feat * 2) |
|
self.upsample3 = SFTUpBlock(num_feat * 2, num_feat) |
|
self.upsample4 = nn.Sequential( |
|
spectral_norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1)), nn.LeakyReLU(0.2, True), UpResBlock(num_feat), |
|
UpResBlock(num_feat), nn.Conv2d(num_feat, 3, kernel_size=3, stride=1, padding=1), nn.Tanh()) |
|
|
|
def swap_feat(self, vgg_feat, updated_feat, dict_feat, location, part_name, f_size): |
|
"""swap the features from the dictionary.""" |
|
|
|
part_feat = vgg_feat[:, :, location[1]:location[3], location[0]:location[2]].clone() |
|
|
|
part_resize_feat = F.interpolate(part_feat, dict_feat.size()[2:4], mode='bilinear', align_corners=False) |
|
|
|
dict_feat = adaptive_instance_normalization(dict_feat, part_resize_feat) |
|
|
|
similarity_score = F.conv2d(part_resize_feat, dict_feat) |
|
similarity_score = F.softmax(similarity_score.view(-1), dim=0) |
|
|
|
select_idx = torch.argmax(similarity_score) |
|
swap_feat = F.interpolate(dict_feat[select_idx:select_idx + 1], part_feat.size()[2:4]) |
|
|
|
attn = self.attn_blocks[f'{part_name}_' + str(f_size)](swap_feat - part_feat) |
|
attn_feat = attn * swap_feat |
|
|
|
updated_feat[:, :, location[1]:location[3], location[0]:location[2]] = attn_feat + part_feat |
|
return updated_feat |
|
|
|
def put_dict_to_device(self, x): |
|
if self.flag_dict_device is False: |
|
for k, v in self.dict.items(): |
|
for kk, vv in v.items(): |
|
self.dict[k][kk] = vv.to(x) |
|
self.flag_dict_device = True |
|
|
|
def forward(self, x, part_locations): |
|
""" |
|
Now only support testing with batch size = 0. |
|
|
|
Args: |
|
x (Tensor): Input faces with shape (b, c, 512, 512). |
|
part_locations (list[Tensor]): Part locations. |
|
""" |
|
self.put_dict_to_device(x) |
|
|
|
vgg_features = self.vgg_extractor(x) |
|
|
|
updated_vgg_features = [] |
|
batch = 0 |
|
for vgg_layer, f_size in zip(self.vgg_layers, self.feature_sizes): |
|
dict_features = self.dict[f'{f_size}'] |
|
vgg_feat = vgg_features[vgg_layer] |
|
updated_feat = vgg_feat.clone() |
|
|
|
|
|
for part_idx, part_name in enumerate(self.parts): |
|
location = (part_locations[part_idx][batch] // (512 / f_size)).int() |
|
updated_feat = self.swap_feat(vgg_feat, updated_feat, dict_features[part_name], location, part_name, |
|
f_size) |
|
|
|
updated_vgg_features.append(updated_feat) |
|
|
|
vgg_feat_dilation = self.multi_scale_dilation(vgg_features['conv5_4']) |
|
|
|
|
|
upsampled_feat = self.upsample0(vgg_feat_dilation, updated_vgg_features[3]) |
|
upsampled_feat = self.upsample1(upsampled_feat, updated_vgg_features[2]) |
|
upsampled_feat = self.upsample2(upsampled_feat, updated_vgg_features[1]) |
|
upsampled_feat = self.upsample3(upsampled_feat, updated_vgg_features[0]) |
|
out = self.upsample4(upsampled_feat) |
|
|
|
return out |
|
|