|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
|
|
|
|
class SeqConv3x3(nn.Module): |
|
"""The re-parameterizable block used in the ECBSR architecture. |
|
|
|
Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices |
|
Ref git repo: https://github.com/xindongzhang/ECBSR |
|
|
|
Args: |
|
seq_type (str): Sequence type, option: conv1x1-conv3x3 | conv1x1-sobelx | conv1x1-sobely | conv1x1-laplacian. |
|
in_channels (int): Channel number of input. |
|
out_channels (int): Channel number of output. |
|
depth_multiplier (int): Width multiplier in the expand-and-squeeze conv. Default: 1. |
|
""" |
|
|
|
def __init__(self, seq_type, in_channels, out_channels, depth_multiplier=1): |
|
super(SeqConv3x3, self).__init__() |
|
self.seq_type = seq_type |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
if self.seq_type == 'conv1x1-conv3x3': |
|
self.mid_planes = int(out_channels * depth_multiplier) |
|
conv0 = torch.nn.Conv2d(self.in_channels, self.mid_planes, kernel_size=1, padding=0) |
|
self.k0 = conv0.weight |
|
self.b0 = conv0.bias |
|
|
|
conv1 = torch.nn.Conv2d(self.mid_planes, self.out_channels, kernel_size=3) |
|
self.k1 = conv1.weight |
|
self.b1 = conv1.bias |
|
|
|
elif self.seq_type == 'conv1x1-sobelx': |
|
conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0) |
|
self.k0 = conv0.weight |
|
self.b0 = conv0.bias |
|
|
|
|
|
scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3 |
|
self.scale = nn.Parameter(scale) |
|
bias = torch.randn(self.out_channels) * 1e-3 |
|
bias = torch.reshape(bias, (self.out_channels, )) |
|
self.bias = nn.Parameter(bias) |
|
|
|
self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32) |
|
for i in range(self.out_channels): |
|
self.mask[i, 0, 0, 0] = 1.0 |
|
self.mask[i, 0, 1, 0] = 2.0 |
|
self.mask[i, 0, 2, 0] = 1.0 |
|
self.mask[i, 0, 0, 2] = -1.0 |
|
self.mask[i, 0, 1, 2] = -2.0 |
|
self.mask[i, 0, 2, 2] = -1.0 |
|
self.mask = nn.Parameter(data=self.mask, requires_grad=False) |
|
|
|
elif self.seq_type == 'conv1x1-sobely': |
|
conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0) |
|
self.k0 = conv0.weight |
|
self.b0 = conv0.bias |
|
|
|
|
|
scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3 |
|
self.scale = nn.Parameter(torch.FloatTensor(scale)) |
|
bias = torch.randn(self.out_channels) * 1e-3 |
|
bias = torch.reshape(bias, (self.out_channels, )) |
|
self.bias = nn.Parameter(torch.FloatTensor(bias)) |
|
|
|
self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32) |
|
for i in range(self.out_channels): |
|
self.mask[i, 0, 0, 0] = 1.0 |
|
self.mask[i, 0, 0, 1] = 2.0 |
|
self.mask[i, 0, 0, 2] = 1.0 |
|
self.mask[i, 0, 2, 0] = -1.0 |
|
self.mask[i, 0, 2, 1] = -2.0 |
|
self.mask[i, 0, 2, 2] = -1.0 |
|
self.mask = nn.Parameter(data=self.mask, requires_grad=False) |
|
|
|
elif self.seq_type == 'conv1x1-laplacian': |
|
conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0) |
|
self.k0 = conv0.weight |
|
self.b0 = conv0.bias |
|
|
|
|
|
scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3 |
|
self.scale = nn.Parameter(torch.FloatTensor(scale)) |
|
bias = torch.randn(self.out_channels) * 1e-3 |
|
bias = torch.reshape(bias, (self.out_channels, )) |
|
self.bias = nn.Parameter(torch.FloatTensor(bias)) |
|
|
|
self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32) |
|
for i in range(self.out_channels): |
|
self.mask[i, 0, 0, 1] = 1.0 |
|
self.mask[i, 0, 1, 0] = 1.0 |
|
self.mask[i, 0, 1, 2] = 1.0 |
|
self.mask[i, 0, 2, 1] = 1.0 |
|
self.mask[i, 0, 1, 1] = -4.0 |
|
self.mask = nn.Parameter(data=self.mask, requires_grad=False) |
|
else: |
|
raise ValueError('The type of seqconv is not supported!') |
|
|
|
def forward(self, x): |
|
if self.seq_type == 'conv1x1-conv3x3': |
|
|
|
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1) |
|
|
|
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0) |
|
b0_pad = self.b0.view(1, -1, 1, 1) |
|
y0[:, :, 0:1, :] = b0_pad |
|
y0[:, :, -1:, :] = b0_pad |
|
y0[:, :, :, 0:1] = b0_pad |
|
y0[:, :, :, -1:] = b0_pad |
|
|
|
y1 = F.conv2d(input=y0, weight=self.k1, bias=self.b1, stride=1) |
|
else: |
|
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1) |
|
|
|
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0) |
|
b0_pad = self.b0.view(1, -1, 1, 1) |
|
y0[:, :, 0:1, :] = b0_pad |
|
y0[:, :, -1:, :] = b0_pad |
|
y0[:, :, :, 0:1] = b0_pad |
|
y0[:, :, :, -1:] = b0_pad |
|
|
|
y1 = F.conv2d(input=y0, weight=self.scale * self.mask, bias=self.bias, stride=1, groups=self.out_channels) |
|
return y1 |
|
|
|
def rep_params(self): |
|
device = self.k0.get_device() |
|
if device < 0: |
|
device = None |
|
|
|
if self.seq_type == 'conv1x1-conv3x3': |
|
|
|
rep_weight = F.conv2d(input=self.k1, weight=self.k0.permute(1, 0, 2, 3)) |
|
|
|
rep_bias = torch.ones(1, self.mid_planes, 3, 3, device=device) * self.b0.view(1, -1, 1, 1) |
|
rep_bias = F.conv2d(input=rep_bias, weight=self.k1).view(-1, ) + self.b1 |
|
else: |
|
tmp = self.scale * self.mask |
|
k1 = torch.zeros((self.out_channels, self.out_channels, 3, 3), device=device) |
|
for i in range(self.out_channels): |
|
k1[i, i, :, :] = tmp[i, 0, :, :] |
|
b1 = self.bias |
|
|
|
rep_weight = F.conv2d(input=k1, weight=self.k0.permute(1, 0, 2, 3)) |
|
|
|
rep_bias = torch.ones(1, self.out_channels, 3, 3, device=device) * self.b0.view(1, -1, 1, 1) |
|
rep_bias = F.conv2d(input=rep_bias, weight=k1).view(-1, ) + b1 |
|
return rep_weight, rep_bias |
|
|
|
|
|
class ECB(nn.Module): |
|
"""The ECB block used in the ECBSR architecture. |
|
|
|
Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices |
|
Ref git repo: https://github.com/xindongzhang/ECBSR |
|
|
|
Args: |
|
in_channels (int): Channel number of input. |
|
out_channels (int): Channel number of output. |
|
depth_multiplier (int): Width multiplier in the expand-and-squeeze conv. Default: 1. |
|
act_type (str): Activation type. Option: prelu | relu | rrelu | softplus | linear. Default: prelu. |
|
with_idt (bool): Whether to use identity connection. Default: False. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, depth_multiplier, act_type='prelu', with_idt=False): |
|
super(ECB, self).__init__() |
|
|
|
self.depth_multiplier = depth_multiplier |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.act_type = act_type |
|
|
|
if with_idt and (self.in_channels == self.out_channels): |
|
self.with_idt = True |
|
else: |
|
self.with_idt = False |
|
|
|
self.conv3x3 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=3, padding=1) |
|
self.conv1x1_3x3 = SeqConv3x3('conv1x1-conv3x3', self.in_channels, self.out_channels, self.depth_multiplier) |
|
self.conv1x1_sbx = SeqConv3x3('conv1x1-sobelx', self.in_channels, self.out_channels) |
|
self.conv1x1_sby = SeqConv3x3('conv1x1-sobely', self.in_channels, self.out_channels) |
|
self.conv1x1_lpl = SeqConv3x3('conv1x1-laplacian', self.in_channels, self.out_channels) |
|
|
|
if self.act_type == 'prelu': |
|
self.act = nn.PReLU(num_parameters=self.out_channels) |
|
elif self.act_type == 'relu': |
|
self.act = nn.ReLU(inplace=True) |
|
elif self.act_type == 'rrelu': |
|
self.act = nn.RReLU(lower=-0.05, upper=0.05) |
|
elif self.act_type == 'softplus': |
|
self.act = nn.Softplus() |
|
elif self.act_type == 'linear': |
|
pass |
|
else: |
|
raise ValueError('The type of activation if not support!') |
|
|
|
def forward(self, x): |
|
if self.training: |
|
y = self.conv3x3(x) + self.conv1x1_3x3(x) + self.conv1x1_sbx(x) + self.conv1x1_sby(x) + self.conv1x1_lpl(x) |
|
if self.with_idt: |
|
y += x |
|
else: |
|
rep_weight, rep_bias = self.rep_params() |
|
y = F.conv2d(input=x, weight=rep_weight, bias=rep_bias, stride=1, padding=1) |
|
if self.act_type != 'linear': |
|
y = self.act(y) |
|
return y |
|
|
|
def rep_params(self): |
|
weight0, bias0 = self.conv3x3.weight, self.conv3x3.bias |
|
weight1, bias1 = self.conv1x1_3x3.rep_params() |
|
weight2, bias2 = self.conv1x1_sbx.rep_params() |
|
weight3, bias3 = self.conv1x1_sby.rep_params() |
|
weight4, bias4 = self.conv1x1_lpl.rep_params() |
|
rep_weight, rep_bias = (weight0 + weight1 + weight2 + weight3 + weight4), ( |
|
bias0 + bias1 + bias2 + bias3 + bias4) |
|
|
|
if self.with_idt: |
|
device = rep_weight.get_device() |
|
if device < 0: |
|
device = None |
|
weight_idt = torch.zeros(self.out_channels, self.out_channels, 3, 3, device=device) |
|
for i in range(self.out_channels): |
|
weight_idt[i, i, 1, 1] = 1.0 |
|
bias_idt = 0.0 |
|
rep_weight, rep_bias = rep_weight + weight_idt, rep_bias + bias_idt |
|
return rep_weight, rep_bias |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class ECBSR(nn.Module): |
|
"""ECBSR architecture. |
|
|
|
Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices |
|
Ref git repo: https://github.com/xindongzhang/ECBSR |
|
|
|
Args: |
|
num_in_ch (int): Channel number of inputs. |
|
num_out_ch (int): Channel number of outputs. |
|
num_block (int): Block number in the trunk network. |
|
num_channel (int): Channel number. |
|
with_idt (bool): Whether use identity in convolution layers. |
|
act_type (str): Activation type. |
|
scale (int): Upsampling factor. |
|
""" |
|
|
|
def __init__(self, num_in_ch, num_out_ch, num_block, num_channel, with_idt, act_type, scale): |
|
super(ECBSR, self).__init__() |
|
self.num_in_ch = num_in_ch |
|
self.scale = scale |
|
|
|
backbone = [] |
|
backbone += [ECB(num_in_ch, num_channel, depth_multiplier=2.0, act_type=act_type, with_idt=with_idt)] |
|
for _ in range(num_block): |
|
backbone += [ECB(num_channel, num_channel, depth_multiplier=2.0, act_type=act_type, with_idt=with_idt)] |
|
backbone += [ |
|
ECB(num_channel, num_out_ch * scale * scale, depth_multiplier=2.0, act_type='linear', with_idt=with_idt) |
|
] |
|
|
|
self.backbone = nn.Sequential(*backbone) |
|
self.upsampler = nn.PixelShuffle(scale) |
|
|
|
def forward(self, x): |
|
if self.num_in_ch > 1: |
|
shortcut = torch.repeat_interleave(x, self.scale * self.scale, dim=1) |
|
else: |
|
shortcut = x |
|
y = self.backbone(x) + shortcut |
|
y = self.upsampler(y) |
|
return y |
|
|