|
import math |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def cubic(x): |
|
"""cubic function used for calculate_weights_indices.""" |
|
absx = torch.abs(x) |
|
absx2 = absx**2 |
|
absx3 = absx**3 |
|
return (1.5 * absx3 - 2.5 * absx2 + 1) * ( |
|
(absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) * |
|
(absx <= 2)).type_as(absx)) |
|
|
|
|
|
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): |
|
"""Calculate weights and indices, used for imresize function. |
|
|
|
Args: |
|
in_length (int): Input length. |
|
out_length (int): Output length. |
|
scale (float): Scale factor. |
|
kernel_width (int): Kernel width. |
|
antialisaing (bool): Whether to apply anti-aliasing when downsampling. |
|
""" |
|
|
|
if (scale < 1) and antialiasing: |
|
|
|
|
|
kernel_width = kernel_width / scale |
|
|
|
|
|
x = torch.linspace(1, out_length, out_length) |
|
|
|
|
|
|
|
|
|
u = x / scale + 0.5 * (1 - 1 / scale) |
|
|
|
|
|
left = torch.floor(u - kernel_width / 2) |
|
|
|
|
|
|
|
|
|
|
|
p = math.ceil(kernel_width) + 2 |
|
|
|
|
|
|
|
indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand( |
|
out_length, p) |
|
|
|
|
|
|
|
distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices |
|
|
|
|
|
if (scale < 1) and antialiasing: |
|
weights = scale * cubic(distance_to_center * scale) |
|
else: |
|
weights = cubic(distance_to_center) |
|
|
|
|
|
weights_sum = torch.sum(weights, 1).view(out_length, 1) |
|
weights = weights / weights_sum.expand(out_length, p) |
|
|
|
|
|
|
|
weights_zero_tmp = torch.sum((weights == 0), 0) |
|
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): |
|
indices = indices.narrow(1, 1, p - 2) |
|
weights = weights.narrow(1, 1, p - 2) |
|
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): |
|
indices = indices.narrow(1, 0, p - 2) |
|
weights = weights.narrow(1, 0, p - 2) |
|
weights = weights.contiguous() |
|
indices = indices.contiguous() |
|
sym_len_s = -indices.min() + 1 |
|
sym_len_e = indices.max() - in_length |
|
indices = indices + sym_len_s - 1 |
|
return weights, indices, int(sym_len_s), int(sym_len_e) |
|
|
|
|
|
@torch.no_grad() |
|
def imresize(img, scale, antialiasing=True): |
|
"""imresize function same as MATLAB. |
|
|
|
It now only supports bicubic. |
|
The same scale applies for both height and width. |
|
|
|
Args: |
|
img (Tensor | Numpy array): |
|
Tensor: Input image with shape (c, h, w), [0, 1] range. |
|
Numpy: Input image with shape (h, w, c), [0, 1] range. |
|
scale (float): Scale factor. The same scale applies for both height |
|
and width. |
|
antialisaing (bool): Whether to apply anti-aliasing when downsampling. |
|
Default: True. |
|
|
|
Returns: |
|
Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round. |
|
""" |
|
squeeze_flag = False |
|
if type(img).__module__ == np.__name__: |
|
numpy_type = True |
|
if img.ndim == 2: |
|
img = img[:, :, None] |
|
squeeze_flag = True |
|
img = torch.from_numpy(img.transpose(2, 0, 1)).float() |
|
else: |
|
numpy_type = False |
|
if img.ndim == 2: |
|
img = img.unsqueeze(0) |
|
squeeze_flag = True |
|
|
|
in_c, in_h, in_w = img.size() |
|
out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale) |
|
kernel_width = 4 |
|
kernel = 'cubic' |
|
|
|
|
|
weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width, |
|
antialiasing) |
|
weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width, |
|
antialiasing) |
|
|
|
|
|
img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w) |
|
img_aug.narrow(1, sym_len_hs, in_h).copy_(img) |
|
|
|
sym_patch = img[:, :sym_len_hs, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv) |
|
|
|
sym_patch = img[:, -sym_len_he:, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv) |
|
|
|
out_1 = torch.FloatTensor(in_c, out_h, in_w) |
|
kernel_width = weights_h.size(1) |
|
for i in range(out_h): |
|
idx = int(indices_h[i][0]) |
|
for j in range(in_c): |
|
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i]) |
|
|
|
|
|
|
|
out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we) |
|
out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1) |
|
|
|
sym_patch = out_1[:, :, :sym_len_ws] |
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(2, inv_idx) |
|
out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv) |
|
|
|
sym_patch = out_1[:, :, -sym_len_we:] |
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(2, inv_idx) |
|
out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv) |
|
|
|
out_2 = torch.FloatTensor(in_c, out_h, out_w) |
|
kernel_width = weights_w.size(1) |
|
for i in range(out_w): |
|
idx = int(indices_w[i][0]) |
|
for j in range(in_c): |
|
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i]) |
|
|
|
if squeeze_flag: |
|
out_2 = out_2.squeeze(0) |
|
if numpy_type: |
|
out_2 = out_2.numpy() |
|
if not squeeze_flag: |
|
out_2 = out_2.transpose(1, 2, 0) |
|
|
|
return out_2 |
|
|