import cv2 import glob import os import sys from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils.download_util import load_file_from_url import numpy as np import torch from gfpgan import GFPGANer from realesrgan import RealESRGANer from realesrgan.archs.srvgg_arch import SRVGGNetCompact from basicsr.utils import imwrite, img2tensor, tensor2img from torchvision.transforms.functional import normalize from basicsr.utils.registry import ARCH_REGISTRY def load_sr(model_path, device, face): if not face=='codeformer': model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) #alter to match dims as needed netscale = 4 model_path = os.path.normpath(model_path) if not os.path.isfile(model_path): model_path = load_file_from_url( url='https://github.com/GucciFlipFlops1917/wav2lip-hq-updated-ESRGAN/releases/download/v0.0.1/4x_BigFace_v3_Clear.pth', model_dir='weights', progress=True, file_name=None) upsampler = RealESRGANer( scale=netscale, model_path=model_path, dni_weight=None, model=model, tile=0, tile_pad=10, pre_pad=0, half=True, gpu_id=0) if face==None: run_params=upsampler else: gfp = GFPGANer( model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) run_params=gfp else: run_params = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(device) ckpt_path = load_file_from_url(url='https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', model_dir='weights/CodeFormer', progress=True, file_name=None) checkpoint = torch.load(ckpt_path)['params_ema'] run_params.load_state_dict(checkpoint) run_params.eval() return run_params def upscale(image, face, properties): try: if face==1: ## GFP-GAN _, _, output = properties.enhance(image, has_aligned=False, only_center_face=False, paste_back=True) elif face==2: ## CODEFORMER net = properties[0] device = properties[1] w = properties[2] image = cv2.resize(image, (512, 512), interpolation=cv2.INTER_LINEAR) cropped_face_t = img2tensor(image / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) try: with torch.no_grad(): cropped_face_t = net(cropped_face_t, w=w, adain=True)[0] restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) del cropped_face_t torch.cuda.empty_cache() except Exception as error: print(f'\tFailed inference for CodeFormer: {error}') restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) output = restored_face.astype('uint8') elif face==0: ## ESRGAN img = image.astype(np.float32) / 255. output, _ = properties.enhance(image, outscale=4) except RuntimeError as error: print('Error', error) print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') return output