Prathmesh Patil
Update app.py
6c4efde verified
import gradio as gr
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
import numpy as np
from keras.models import load_model
import cv2 as cv
# Load the trained model
model = load_model('FaceAuthenticator.keras')
# Load the pre-trained face detection model with error handling
face_cascade = cv.CascadeClassifier('hass_face.xml')
# Define a function to preprocess the input image
def preprocess_image(image_path):
img = cv.imread(image_path)
img = cv.resize(img, (224, 224))
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
img_array = np.expand_dims(img, axis=0)
img_array = preprocess_input(img_array)
return img_array
# Define a function to classify the input image
def classify_image(image_data):
try:
# Save the uploaded image temporarily
temp_image_path = "temp_image.jpg"
image_data.save(temp_image_path)
# Preprocess the image
img_array = preprocess_image(temp_image_path)
# Convert the image to grayscale
gray_image = cv.cvtColor(cv.imread(temp_image_path), cv.COLOR_BGR2GRAY)
# Detect faces in the image
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
# Check if any faces were detected
if len(faces) == 0:
return "No faces detected in the input image."
else:
# Make predictions
prediction = model.predict(img_array)
# Return the prediction
if prediction[0][0] > 0.5:
return "The image is classified as real."
else:
return "The image is classified as fake."
except Exception as e:
return f"An error occurred: {str(e)}"
# Create the Gradio interface
demo = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=gr.Textbox(label="Prediction"),
title="DeepFake Detection for Facial images",
description="Upload an Facial image and the model will classify it as real or fake.",
theme="default",
)
# Launch the Gradio app
demo.launch()