Prathmesh Patil commited on
Commit
09d7172
·
verified ·
1 Parent(s): e00c2f4

Delete code.py

Browse files
Files changed (1) hide show
  1. code.py +0 -60
code.py DELETED
@@ -1,60 +0,0 @@
1
- #importing important libraries
2
- import numpy as np
3
- import keras
4
- from keras.applications.vgg16 import VGG16, preprocess_input
5
- from keras.layers import Flatten, Dense
6
- from keras.models import Model
7
- import cv2
8
- import os
9
- import numpy as np
10
- import tensorflow as tf
11
-
12
- from keras.models import Sequential
13
- from keras.preprocessing import image
14
- from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
15
- from tensorflow.keras.preprocessing.image import ImageDataGenerator
16
-
17
- # Load the pre-trained VGG16 model
18
- base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
19
-
20
- # Freeze the base model layers
21
- for layer in base_model.layers:
22
- layer.trainable = False
23
-
24
- # Add custom layers for face classification
25
- x = base_model.output
26
- x = Flatten()(x)
27
- x = Dense(1024, activation='relu')(x)
28
- predictions = Dense(1, activation='sigmoid')(x)
29
-
30
- # Create the final model
31
- model = Model(inputs=base_model.input, outputs=predictions)
32
-
33
- # Compile the model
34
- model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
35
-
36
- # Define data generators for training and validation
37
- data_generator = ImageDataGenerator(preprocessing_function=preprocess_input)
38
-
39
- train_data = data_generator.flow_from_directory(
40
- 'img_for_deepfake_detection/train',
41
- target_size=(224, 224),
42
- batch_size=32,
43
- class_mode='binary',
44
- # Number of workers for parallel data loading
45
- )
46
-
47
- valid_data = data_generator.flow_from_directory(
48
- 'img_for_deepfake_detection/valid',
49
- target_size=(224, 224),
50
- batch_size=32,
51
- class_mode='binary',
52
- # Number of workers for parallel data loading
53
- )
54
-
55
- # Train the model
56
- model.fit(train_data, epochs=10, validation_data=valid_data)
57
-
58
- # Evaluate the model on the validation data
59
- loss, accuracy = model.evaluate(valid_data)
60
- print(f'Validation Accuracy: {accuracy*100:.2f}%')