Spaces:
Sleeping
Sleeping
Prathmesh Patil
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from keras.preprocessing import image
|
3 |
+
from keras.applications.vgg16 import preprocess_input
|
4 |
+
import numpy as np
|
5 |
+
from keras.models import load_model
|
6 |
+
import cv2 as cv
|
7 |
+
|
8 |
+
# Load the trained model
|
9 |
+
model = load_model('fake_real_face_classification_model.keras')
|
10 |
+
|
11 |
+
# Load the pre-trained face detection model with error handling
|
12 |
+
face_cascade = cv.CascadeClassifier('img_for_deepfake_detection\\hass_face.xml')
|
13 |
+
|
14 |
+
# Define a function to preprocess the input image
|
15 |
+
def preprocess_image(image_path):
|
16 |
+
img = cv.imread(image_path)
|
17 |
+
img = cv.resize(img, (224, 224))
|
18 |
+
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
|
19 |
+
img_array = np.expand_dims(img, axis=0)
|
20 |
+
img_array = preprocess_input(img_array)
|
21 |
+
return img_array
|
22 |
+
|
23 |
+
# Define a function to classify the input image
|
24 |
+
def classify_image(image_path):
|
25 |
+
# Preprocess the image
|
26 |
+
img_array = preprocess_image(image_path)
|
27 |
+
|
28 |
+
# Convert the image to grayscale
|
29 |
+
gray_image = cv.cvtColor(cv.imread(image_path), cv.COLOR_BGR2GRAY)
|
30 |
+
|
31 |
+
# Detect faces in the image
|
32 |
+
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
33 |
+
|
34 |
+
# Check if any faces were detected
|
35 |
+
if len(faces) == 0:
|
36 |
+
return "No faces detected in the input image."
|
37 |
+
else:
|
38 |
+
# Make predictions
|
39 |
+
prediction = model.predict(img_array)
|
40 |
+
|
41 |
+
# Return the prediction
|
42 |
+
if prediction[0][0] > 0.5:
|
43 |
+
return "The image is classified as real."
|
44 |
+
else:
|
45 |
+
return "The image is classified as fake."
|
46 |
+
|
47 |
+
# Create the Gradio interface
|
48 |
+
demo = gr.Interface(
|
49 |
+
fn=classify_image,
|
50 |
+
inputs=gr.Image(type="file", label="Upload Image"),
|
51 |
+
outputs=gr.Textbox(label="Prediction"),
|
52 |
+
title="DeepFake Image Detection",
|
53 |
+
description="Upload an image and the model will classify it as real or fake.",
|
54 |
+
theme="default",
|
55 |
+
layout="vertical",
|
56 |
+
css="""
|
57 |
+
.gradio-container {
|
58 |
+
font-family: 'Roboto', sans-serif;
|
59 |
+
}
|
60 |
+
.gradio-input, .gradio-output {
|
61 |
+
border: 1px solid #ccc;
|
62 |
+
border-radius: 4px;
|
63 |
+
padding: 10px;
|
64 |
+
font-size: 16px;
|
65 |
+
}
|
66 |
+
.gradio-button {
|
67 |
+
background-color: #4CAF50;
|
68 |
+
color: white;
|
69 |
+
border: none;
|
70 |
+
border-radius: 4px;
|
71 |
+
padding: 10px 20px;
|
72 |
+
font-size: 16px;
|
73 |
+
cursor: pointer;
|
74 |
+
}
|
75 |
+
"""
|
76 |
+
)
|
77 |
+
|
78 |
+
# Launch the Gradio app
|
79 |
+
demo.launch()
|