Spaces:
Paused
Paused
import streamlit as st | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoConfig, AutoModelForSequenceClassification | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from PyPDF2 import PdfReader | |
from docx import Document | |
import csv | |
import json | |
import torch | |
from langchain_community.vectorstores import FAISS | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from huggingface_hub import login | |
# Autenticaci贸n en Hugging Face | |
huggingface_token = st.secrets["HUGGINGFACE_TOKEN"] | |
login(huggingface_token) | |
# Configurar modelo y tokenizador | |
model_name = 'Qwen/Qwen2-1.5B' | |
model_config = AutoConfig.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "right" | |
text_generation_pipeline = pipeline( | |
model=model_name, | |
tokenizer=tokenizer, | |
task="text-generation", | |
temperature=0.2, | |
repetition_penalty=1.1, | |
return_full_text=True, | |
max_new_tokens=1000, | |
) | |
prompt_template = """ | |
### [INST] | |
Instruction: Answer the question based on your knowledge. Here is context to help: | |
{context} | |
### QUESTION: | |
{question} | |
[/INST] | |
""" | |
mistral_llm = HuggingFacePipeline(pipeline=text_generation_pipeline) | |
# Crear el prompt desde la plantilla de prompt | |
prompt = PromptTemplate( | |
input_variables=["context", "question"], | |
template=prompt_template, | |
) | |
# Crear la cadena LLM | |
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) | |
# Funci贸n para manejar archivos subidos | |
def handle_uploaded_file(uploaded_file): | |
try: | |
if uploaded_file.name.endswith(".txt"): | |
text = uploaded_file.read().decode("utf-8") | |
elif uploaded_file.name.endswith(".pdf"): | |
reader = PdfReader(uploaded_file) | |
text = "" | |
for page in range(len(reader.pages)): | |
text += reader.pages[page].extract_text() | |
elif uploaded_file.name.endswith(".docx"): | |
doc = Document(uploaded_file) | |
text = "\n".join([para.text for para in doc.paragraphs]) | |
elif uploaded_file.name.endswith(".csv"): | |
text = "" | |
content = uploaded_file.read().decode("utf-8").splitlines() | |
reader = csv.reader(content) | |
text = " ".join([" ".join(row) for row in reader]) | |
elif uploaded_file.name.endswith(".json"): | |
data = json.load(uploaded_file) | |
text = json.dumps(data, indent=4) | |
else: | |
text = "Tipo de archivo no soportado." | |
return text | |
except Exception as e: | |
return str(e) | |
# Funci贸n para traducir texto | |
def translate(text, target_language): | |
context = "" | |
question = f"Por favor, traduzca el siguiente documento al {target_language}:\n{text}\nAseg煤rese de que la traducci贸n sea precisa y conserve el significado original del documento." | |
response = llm_chain.run(context=context, question=question) | |
return response | |
# Funci贸n para resumir texto | |
def summarize(text, length): | |
context = "" | |
question = f"Por favor, haga un resumen {length} del siguiente documento:\n{text}\nAseg煤rese de que el resumen sea conciso y conserve el significado original del documento." | |
response = llm_chain.run(context=context, question=question) | |
return response | |
# Configuraci贸n del modelo de clasificaci贸n | |
def load_classification_model(): | |
tokenizer_cls = AutoTokenizer.from_pretrained("mrm8488/legal-longformer-base-8192-spanish") | |
model_cls = AutoModelForSequenceClassification.from_pretrained("mrm8488/legal-longformer-base-8192-spanish") | |
return model_cls, tokenizer_cls | |
classification_model, classification_tokenizer = load_classification_model() | |
id2label = {0: "multas", 1: "politicas_de_privacidad", 2: "contratos", 3: "denuncias", 4: "otros"} | |
def classify_text(text): | |
inputs = classification_tokenizer(text, return_tensors="pt", max_length=4096, truncation=True, padding="max_length") | |
classification_model.eval() | |
with torch.no_grad(): | |
outputs = classification_model(**inputs) | |
logits = outputs.logits | |
predicted_class_id = logits.argmax(dim=-1).item() | |
predicted_label = id2label[predicted_class_id] | |
return predicted_label | |
# Funci贸n para cargar documentos JSON | |
def load_json_documents(category): | |
try: | |
with open(f"./{category}.json", "r", encoding="utf-8") as f: | |
data = json.load(f)["questions_and_answers"] | |
documents = [entry["question"] + " " + entry["answer"] for entry in data] | |
return documents | |
except FileNotFoundError: | |
return [] | |
# Configuraci贸n de FAISS y embeddings | |
def create_vector_store(docs): | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-l6-v2", model_kwargs={"device": "cpu"}) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) | |
split_docs = text_splitter.split_text(docs) | |
vector_store = FAISS.from_texts(split_docs, embeddings) | |
return vector_store | |
def explain_text(user_input, document_text): | |
classification = classify_text(document_text) | |
if classification in ["multas", "politicas_de_privacidad", "contratos", "denuncias"]: | |
docs = load_json_documents(classification) | |
if docs: | |
vector_store = create_vector_store(docs) | |
search_docs = vector_store.similarity_search(user_input) | |
context = " ".join([doc.page_content for doc in search_docs]) | |
else: | |
context = "" | |
else: | |
context = "" | |
question = user_input | |
response = llm_chain.run(context=context, question=question) | |
return response | |
def main(): | |
st.title("LexAIcon") | |
st.write("Puedes conversar con este chatbot basado en Mistral-7B-Instruct y subir archivos para que el chatbot los procese.") | |
with st.sidebar: | |
st.caption("[Consigue un HuggingFace Token](https://huggingface.co/settings/tokens)") | |
operation = st.radio("Selecciona una operaci贸n", ["Resumir", "Traducir", "Explicar"]) | |
if operation == "Explicar": | |
user_input = st.text_area("Introduce tu pregunta:", "") | |
uploaded_file = st.file_uploader("Sube un archivo", type=["txt", "pdf", "docx", "csv", "json"]) | |
if uploaded_file and user_input: | |
document_text = handle_uploaded_file(uploaded_file) | |
bot_response = explain_text(user_input, document_text) | |
st.write(f"**Assistant:** {bot_response}") | |
else: | |
uploaded_file = st.file_uploader("Sube un archivo", type=["txt", "pdf", "docx", "csv", "json"]) | |
if uploaded_file: | |
document_text = handle_uploaded_file(uploaded_file) | |
if operation == "Traducir": | |
target_language = st.selectbox("Selecciona el idioma de traducci贸n", ["espa帽ol", "ingl茅s", "franc茅s", "alem谩n"]) | |
if target_language: | |
bot_response = translate(document_text, target_language) | |
st.write(f"**Assistant:** {bot_response}") | |
elif operation == "Resumir": | |
summary_length = st.selectbox("Selecciona la longitud del resumen", ["corto", "medio", "largo"]) | |
if summary_length: | |
if summary_length == "corto": | |
length = "de aproximadamente 50 palabras" | |
elif summary_length == "medio": | |
length = "de aproximadamente 100 palabras" | |
elif summary_length == "largo": | |
length = "de aproximadamente 500 palabras" | |
bot_response = summarize(document_text, length) | |
st.write(f"**Assistant:** {bot_response}") | |
if __name__ == "__main__": | |
main() |